
Motivating example (MIPSI): Babyboot

Model
The figure to the right is a schematic representation of a swinging baby-
boot attached by a shoelace to a rigid support. The mechanical model
of the babyboot consists of a thin uniform rod A attached to a fixed
support N by a revolute joint, and a uniform plate B connected to A
with a second revolute joint so that B can rotate freely about A’s axis.
Note: The revolute joints’ axes are perpendicular, not parallel.

• Bodies: The rod and plate are (inflexible/undeformable).

• Connections: The revolute joints are
(massless, frictionless, with no slop or flexibility).

• Force: is uniform and constant.
Other contact forces (e.g., ) and
distance forces (e.g., ) are negligible.

• Newtonian reference frame:
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bybz
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Identifiers
Right-handed sets of unit vectors n̂x, n̂y, n̂z; âx, ây, âz; and b̂x, b̂y, b̂z are fixed in N , A, and B,
respectively, with n̂x = âx parallel to the revolute axis joining A to N , n̂z vertically upward, âz = b̂z

parallel to the rod’s long axis (and the revolute axis joining B to A), and b̂z perpendicular to plate B.

Quantity Symbol Type Value
Earth’s gravitational constant g Constant 9.81 m/s2

Distance between No and Acm LA Constant 7.5 cm
Distance between No and Bcm 20 cm

Mass of A 0.01 kg
Mass of B 0.1 kg
A’s moment of inertia about Acm for âx IA Constant 0.05 kg∗cm2

B’s moment of inertia about Bcm for b̂x IB
x Constant 2.5 kg∗cm2

B’s moment of inertia about Bcm for b̂y Constant 0.5 kg∗cm2

B’s moment of inertia about Bcm for b̂z Constant 2.0 kg∗cm2

Angle from n̂z to âz with +n̂x sense Varies
Angle from ây to b̂y with +âz sense Varies

Time t Varies
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Physics Physics from www.MotionGenesis.com ⇒ Get Started ⇒ Chaotic Pendulum (Babyboot).
The ODEs (ordinary differential equations) governing the motion of this mechanical system are11

q̈A =
2 q̇A q̇B sin(qB) cos(qB)

(
IBx − IBy

) − (
mA LA + mB LB

)
g sin(qA)

IA + mA L2
A + mB L2

B + IBx cos2(qB) + IBy sin2(qB)

q̈B =
-q̇A

2 sin(qB) cos(qB) (IBx − IBy )

IBz

Simplify and solve
The set of differential equations governing the babyboot’s motion are (circle the appropriate qualifiers)

Uncoupled Linear Homogeneous Constant-coefficient 1st-order
Coupled Nonlinear Inhomogeneous Variable-coefficient 2nd-order

Computers has revolutionized the solution of differential equations. There are a many numerical algo-
rithms for solving nonlinear, coupled, variable coefficient, ODEs (ordinary differential equations) including
Euler’s method, predictor-corrector, Runga-Kutta, etc. In addition, there are many programs (MATLABR©,

MotionGenesis, WolframAlpha, etc.) that make it easy to solve ODEs.

Computer (numerical) solution of ODEs with MotionGenesis (with plotting)

Variable qA’’, qB’’ % Angles and first/second time-derivatives.

%--------------------------------------------------------------------

qA’’ = 2*( 508.89*sin(qA) - sin(qB)*cos(qB)*qA’*qB’ ) / (-21.556 + sin(qB)^2)

qB’’ = -sin(qB)*cos(qB)*qA’^2
%--------------------------------------------------------------------

Input tFinal = 10 sec, tStep = 0.02 sec, absError = 1.0E-07

Input qA = 90 deg, qB = 1.0 deg, qA’ = 0.0 rad/sec, qB’ = 0.0 rad/sec

OutputPlot t sec, qA degrees, qB degrees
%--------------------------------------------------------------------

ODE() solveBabybootODE

Quit

Alternately: Simplify via linearization and solve analytically (valid only for very small angles)

Linearizing these ODEs about qA = 0 and qB = 0 produces a simpler set of ODEs, namely

q̈A = -ω2 qA q̈B = 0 where ω =
√

(mA LA +mB LB) g

IA +mA L2
A + mB L2

B + IBx

When released from rest [i.e., no initial spin, i.e., q̇A(0) = q̇B(0) = 0], the solutions to these ODEs are

qA(t) = qA(0) cos(ω t) qB(t) = qB(0) constant!

11Four methods for forming equations of motion are: Free-body diagrams of A and B (which is inefficient as it introduces up

to 10 unknown force/torque measures); D’Alembert’s method (road maps of Section 22.6) which efficiently forms the two equations
shown for q̈A and q̈B (but require a clever selection of systems, points, and unit vectors); Lagrange’s equations (an energy-based

method that automates D’Alembert’s cleverness); Kane’s equations (a modern efficient blend of D’Alembert and Lagrange).
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Interpret
The solution to these differential equations reveals this simple system has strange, non-intuitive motion.12

For certain initial values of qA, the motion of plate B is well-behaved and “stable”. Alternately, for other
initial values of qA, B’s motion is “chaotic” – meaning that a small variation in the initial value of qB

or numerical integration inaccuracies lead to dramatically different results (these ODEs are used to test the

accuracy of numerical integrators – the plots below required a numerical integrator error of absError = 1 x 10-7).
The following chart and figure to the right shows this system’s regions of
stability (black) and instability (green). Notice the “chaotic” plot below
shows qB is very sensitive to initial values. A 0.5◦ change in the initial value
of qB(0) results in more than a 2000◦ difference in the value of qB(t = 10)!

Initial value of qA Stability
0◦ ≤ qA(0) ≤ 71.3◦ Stable black

71.4◦ ≤ qA(0) ≤ 111.77◦ Unstable green

111.78◦ ≤ qA(0) ≤ 159.9◦ Stable black

160.0◦ ≤ qA(0) ≤ 180.0◦ Unstable green

“Stable”: Released with qA(0) = 45◦

-1.5

-1

-0.5

0

0.5

1

1.5

0 2 4 6 8 10

q B
  (

de
gr

ee
s)

Time  (seconds)

qB(0) = 0.5 degrees
qB(0) = 1.0 degrees

“Chaotic”: Released with qA(0) = 90◦
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Investigation of stability: More simulation results
Stable: Released from 5◦

-1.5

-1

-0.5

0

0.5

1

0 2 4 6 8 10

q B
  (

de
gr

ee
s)

Time  (seconds)

Stable: Released from 30◦
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Chaotic: Released from 90◦

-1400

-1200

-1000

-800

-600

-400

-200

0

200

0 2 4 6 8 10

q B
  (

de
gr

ee
s)

Time  (seconds)

-1.5

-1

-0.5

0

0.5

1

1.5

0 0.5 1 1.5 2 2.5 3 3.5 4

q B
  (

de
gr

ee
s)

Time  (seconds)

Stable: Released from 135◦
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Beat: Released from 158◦
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Chaotic: Released from 177◦

12More information about this problem is in “Mechanical Demonstration of Mathematical Stability and Instability”, Inter-
national Journal of Engineering Education (Journal of Mechanical Engineering Education), Vol. 2, No. 4, 1974, pp. 45-47,
by Thomas R. Kane. Or visit www.MotionGenesis.com ⇒ Get Started ⇒ Chaotic Pendulum (Babyboot) .
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