Motivating example (MIPSI): Babyboot
Model

The figure to the right is a schematic representation of a swinging baby-
boot attached by a shoelace to a rigid support. The mechanical model
of the babyboot consists of a thin uniform rod A attached to a fixed
support N by a revolute joint, and a uniform plate B connected to A
with a second revolute joint so that B can rotate freely about A’s axis.
Note: The revolute joints’ axes are perpendicular, not parallel.

e Bodies: The rod and plate are rigid (inflexible/undeformable).

e Connections: The revolute joints are ideal
(massless, frictionless, with no slop or flexibility).

e Force: Earth’s gravity is uniform and constant.
Other contact forces (e.g., air resistance, solar/light pressure ) and
distance forces (e.g., electromagnetic, other gravitational ) are negligible.
e Newtonian reference frame: Earth
Identifiers

Right-handed sets of unit vectors ny, ny, n,; ay, ay, a,; and BX, By, BZ are fixed in N, A, and
respectively, with n, = ay parallel to the revolute axis joining A to N, n, vertically upward, a, =
parallel to the rod’s long axis (and the revolute axis joining B to A), and b, perpendicular to plate B.

B,
b,

Quantity Symbol Type Value
Earth’s gravitational constant g Constant 9.81 m/s?
Distance between N, and A, L, Constant 7.5 cm
Distance between N, and B, Lg Constant 20 cm
Mass of A mA Constant 0.01 kg
Mass of B mP Constant 0.1 kg
A’s moment of inertia about A, for a, I Constant 0.05 kg*cm?
B’s moment of inertia about B, for by If Constant 2.5 kg*xcm?
B’s moment of inertia about B, for Ey IyB Constant 0.5 kg*cm?
B’s moment of inertia about B.,, for BZ If Constant 2.0 kgxcm?
Angle from n, to a, with +n, sense qa Dependent variable Varies
Angle from a, to Ey with +a, sense qB Dependent variable Varies
Time t Independent variable Varies
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The ODEs (ordinary differential equations) governing the motion of this mechanical system are

2G4 s sin(gp) cos(qp) (IF —1F) — (m*La+mP Lp) gsin(qa)
4+ mA LY + mP L3, + 12 cos?(qp) + 1 sin®(gp)

Gda =

442 sin(qp) cos(qp) (IZ — If)
7

B =

"Four methods for forming equations of motion are: Free-body diagrams of A and B (which is inefficient as it introduces up
to 10 unknown force/torque measures); D’Alembert’s method (road maps of Section 22.6) which efficiently forms the two equations
shown for g4 and Gg (but require a clever selection of systems, points, and unit vectors); Lagrange’s equations (an energy-based
method that automates D’Alembert’s cleverness); Kane’s equations (a modern efficient blend of D’Alembert and Lagrange).
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Simplify and solve

Computers has revolutionized the solution of differential equations. There are a many numerical algo-
rithms for solving nonlinear, coupled, variable coefficient, ODEs (ordinary differential equations) including
Euler’s method, predictor-corrector, Runga-Kutta, etc. In addition, there are many programs (MATLAB®,
MotionGenesis, WolframAlpha, etc.) that make it easy to solve ODEs.

Computer (numerical) solution of ODEs with MotionGenesis (with plotting)

Variable gA’’, gB’’ % Angles and first/second time-derivatives.
h
qA’’ = 2%( 508.89*sin(qA) - sin(gB)*cos(gB)*qA’*gB’ ) / (-21.556 + sin(gB)"~2)
gB’’ = -sin(gB)*cos(gB)*qA’"2

h
Input tFinal = 10 sec, tStep = 0.02 sec, absError = 1.0E-07

Input qA = 90 deg, ¢gB = 1.0 deg, gA’ = 0.0 rad/sec, ¢gB’ = 0.0 rad/sec
OutputPlot t sec, qA degrees, gB degrees

ODE() solveBabybootODE
Quit

Interpret

The solution to these differential equations reveals this simple system has strange, non-intuitive motion."
For certain initial values of g4, the motion of plate B is well-behaved and “stable”. Alternately, for other
initial values of ¢4, B’s motion is *“chaotic” — meaning that a small variation in the initial value of ¢p
or numerical integration inaccuracies lead to dramatically different results (these ODEs are used to test the

2

accuracy of numerical integrators — the plots below required a numerical integrator error of absError = 1x1077).

The following chart and figure to the right shows this system’s regions of
stability (black) and instability (green). Notice the ‘“chaotic” plot below
shows ¢p is very sensitive to initial values. A 0.5° change in the initial value
of ¢p(0) results in more than a 2000° difference in the value of ¢gg(t = 10)!

Initial value of ¢a Stability
0° <gqa(0) < T71.3° Stable black
71.4° < qa(0) < 111.77° | Unstable | green
111.78° < qa(0) < 159.9° Stable black
160.0° < qga(0) < 180.0° | Unstable | green
“Stable”: Released with ¢4(0) = 45° “Chaotic”: Released with ¢4(0) = 90°
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2More information about this problem is in “Mechanical Demonstration of Mathematical Stability and Instability”, Inter-
national Journal of Engineering Education (Journal of Mechanical Engineering Education), Vol. 2, No. 4, 1974, pp. 45-47,
by Thomas R. Kane. Or visit |WWW,M0ti0nGenesis.com = Get Started = Chaotic Pendulum (Babyboot) |
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Investigation of stability: More simulation results
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% File: BabybootWithKaneLagrange.txt
% Problem: Analysis of 3D chaotic double pendulum
% Copyright (c) 2009 Motion Genesis LLC. All rights reserved.

7 ________________ _ AANNNNNNNNNNMNN
SetDigits( 5 ) % Number of digits displayed for numbers

Y% -

% Physical objects

NewtonianFrame N

RigidBody A % Upper rod

RigidBody B % Lower plate

)

% Mathematical declarations )
Variable gA’’ % Pendulum angle and its time-derivatives 9
Variable qB’’ % Plate angle and its time-derivative =

Constant LA = 7.5 cm % Distance from pivot to A’s mass center
Constant LB = 20 cm % Distance from pivot to B’s mass center
A.SetMassInertia( mA = 10 grams, IAx = 50 gxcm™2, IAy, IAz )
B.SetMassInertia( mB = 100 grams, IBx = 2500 g*cm”™2, IBy = 500 gxcm~2, IBz = 2000 g*cm™2 )
)
% Rotational kinematics
A.RotateX( N, qA )

B.RotateZ( A, gB )

% Translational kinematics
Acm.Translate( No, -LA*Az> )
Bcm.Translate( No, -LB*Az> )

yA
% Add relevant forces
g> = -9.81xNz>
System.AddForceGravity( g> )

% D’Alembert’s equations of motion for A+B and just B.
Dynamics[1] = Dot( System(A,B).GetDynamics(No), Ax> )
Dynamics[2] = Dot( B.GetDynamics(Bcm), Bz> )

)
% Kane’s equations of motion (uses generalized speeds)
SetGeneralizedSpeed( gA’, gB’ )

Copyright © 2009-2015 Motion Genesis LLC. 3 www.MotionGenesis.com



Dynamics := System.GetDynamicsKane ()

% Kinetic and potential energy

= System.GetKineticEnergy()

PE = System.GetForceGravityPotentialEnergy( g>, No )
Energy = KE + PE
R ——
% Lagranges’s equations of motion (uses generalized coordinates)
SetGeneralizedCoordinates( qA, gB )

Dynamics := System.GetDynamicsLagrange( SystemPotential = PE )

Solve( Dynamics, gA’’, gB’’ )

=
[ca ]
|

% Numerical integration parameters and initial values.

Input tFinal=10, tStep=0.02, absError=1.0E-07, relError=1.0E-07

Input qA = 90 deg, qA’ = 0.0 rad/sec, gB = 1.0 deg, qgB’ = 0.0 rad/sec
/A —
% List output quantities and solve ODEs.
OutputPlot t sec, qA deg, qB deg, Energy N*m
ODE() Babyboot

% Record input together with responses
Save BabybootWithKaneLagrange.all
Quit
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