MGIceSkaterWithTurntableKaneLagrange.html  (MotionGenesis input/output).
```   (1) % MotionGenesis file:  MGIceSkaterWithTurntableKaneLagrange.txt
(3) %------------------------------------------------------------
(4) NewtonianFrame N
(5) RigidBody      A           % Head, torsion, legs.
(6) RigidFrame     B           % Arms.
(7) Particle       Q           % Heavy dumbbell.
(8) %------------------------------------------------------------
(9) Specified   qB''           % Arm angle.
(10) Variable    wA'            % Ay> measure of A's angular velocity in N.
(11) Constant    g = 9.8 m/s^2  % Earth's gravitational acceleration.
(12) Constant    hA             % Distance between Acm and Bo.
(13) Constant    L = 0.7 m      % Distance between Bo and Q.
(14) Q.SetMass( m = 12 kg )
(15) A.SetInertia( Acm,  Ixx = 18.6 kg*m^2,  Iyy = 0.6 kg*m^2,  Izz = 18 kg*m^2 )
(16) %------------------------------------------------------------
(17) %       Rotational kinematics.
(18) A.SetAngularVelocity(  N,  wA*Ay> )
-> (19) w_A_N> = wA*Ay>

(20) B.RotateZ(  A,  qB )
-> (21) B_A = [cos(qB), sin(qB), 0;  -sin(qB), cos(qB), 0;  0, 0, 1]
-> (22) w_B_A> = qB'*Bz>
-> (23) w_B_N> = wA*Ay> + qB'*Bz>
-> (24) alf_B_A> = qB''*Bz>

(25) %------------------------------------------------------------
(26) %       Translational kinematics.
(27) Acm.SetVelocity(  N,  0>  )
-> (28) v_Acm_N> = 0>

(29) Bo.Translate(  Acm,  hA*Ay>  )
-> (30) p_Acm_Bo> = hA*Ay>
-> (31) v_Bo_N> = 0>
-> (32) a_Bo_N> = 0>

(33) Q.Translate(  Bo,  -L*By>  )
-> (34) p_Bo_Q> = -L*By>
-> (35) v_Q_N> = L*qB'*Bx> - L*sin(qB)*wA*Bz>
-> (36) a_Q_N> = -L*sin(qB)*wA^2*Ax> + L*qB''*Bx> + L*qB'^2*By> - L*(2*cos(qB)*
qB'*wA+sin(qB)*wA')*Bz>

(37) %------------------------------------------------------------
-> (40) Force_Q> = -m*g*Ay>

(41) %------------------------------------------------------------
(42) %       Form and solve rotational equation of motion.
(43) SetGeneralizedSpeed( wA )
(44) Zero = System.GetDynamicsKane()
-> (45) Zero = [2*m*L^2*sin(qB)*cos(qB)*qB'*wA + (Iyy+m*L^2*sin(qB)^2)*wA']

(46) Solve( Zero,  wA' )
-> (47) wA' = -2*m*L^2*sin(qB)*cos(qB)*qB'*wA/(Iyy+m*L^2*sin(qB)^2)

(48) %------------------------------------------------------------
```