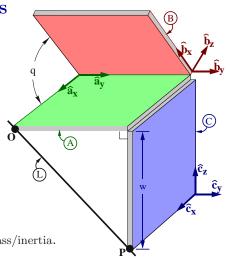
7.3 Mass, mass center, and inertia calculations


The figure to the right shows three identical uniform hingeconnected plates A, B, and C.

Right-handed sets of mutually perpendicular unit vectors $\hat{\mathbf{a}}_{i}$, \mathbf{b}_{i} , and $\widehat{\mathbf{c}}_{i}$ (i = x, y, z) are fixed in A, B, and C, respectively, with $\hat{\mathbf{a}}_{\mathbf{v}} = \mathbf{b}_{\mathbf{v}} = \hat{\mathbf{c}}_{\mathbf{v}}$ parallel to the hinge connecting A and B.

The plates are thin and square and have dimension w = 1 meter and mass m = 12 kg.

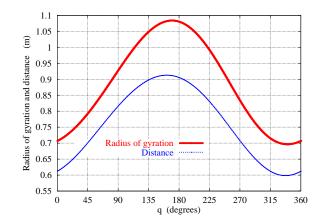
Points O and P mark corners of A and C and the angle qcharacterizes B's orientation in A.

Note: Problem solution at www.MotionGenesis.com \Rightarrow Get Started \Rightarrow Plate mass/inertia.

- 1. Find the distance between line \overline{OP} and the center of mass $S_{\rm cm}$ of the system formed by A, B, C. Result: Distance = $0.1178511\sqrt{42 + \cos^2(q) + 6\sin(q) - 16\cos(q)}$
- 2. For $q = 90^{\circ}$, find λ_i (i=1,2,3), the system's principal moments of inertia about $S_{\rm cm}$. Next, find the angle between $\hat{\mathbf{a}}_{v}$ and the principal axis associated with this system's **minimum** moment of inertia.

Result: $\lambda_1 = 5 \text{ kg m}^2$ $\lambda_2 = 13 \text{ kg m}^2$ $\lambda_3 = 14 \text{ kg m}^2$ Angle = 65.90516°

3. The system's radius of gyration about line \overline{OP} is a measure of the how far the mass distribution is from line \overline{OP} and is defined as $\sqrt{I/m}$ where I is the system's moment of inertia about \overline{OP} and m is the system's mass. Using **physical intuition**, estimate the values of q that produce the smallest and largest radii of gyration about line \overline{OP} and provide a reason for choosing these values.


 $q_{\text{large}} \approx 160^{\circ}$ $q_{\rm small} \approx 340^{\circ}$ $(0 \le q \le 360^{\circ})$ Result:

These values minimize or maximize the distance from line OP to B's mass center. Reason:

Plot the system's mass center distance from line \overline{OP} and the system's radius of gyration about line \overline{OP} for $0 \le q \le 360^{\circ}$. Determine the minimum/maximum distance and radius of gyration

4. and associated values of q.

	$\begin{array}{cc} \text{Minimum} \\ \text{Value} & q \end{array}$	$\begin{array}{cc} \text{Maximum} \\ \text{Value} & q \end{array}$
Distance	0.598 m 337°	0.913 m 161°
Gyration	0.696 m 340°	1.084 m 169°

