Homework 4. Chapter 5. Vector bases and rotation matrices I

Show work – except for \clubsuit fill-in-blanks-problems.

The following shows a *right triangle* with one of its angles labeled as θ .

Write definitions for sine, cosine, and tangent in terms of:

- **h**ypotenuse the triangle's longest side (opposite the 90° angle).
- **o**pposite the side opposite to θ
- **a**djacent the side adjacent to θ

Note: A mnemonic for these definitions is "<u>SohCahToa</u>".

Note: A *right triangle* is a triangle with a 90° angle.

4.2 \clubsuit Pythagorean theorem and law of cosines - memorize. (Section 1.5.1). Draw a right-triangle with a hypotenuse of length c and other sides of length a and b. Relate c to a and b with the **Pythagorean theorem**.

Result:

$$c^2 = a^2 + b^2$$

A non-right-triangle has angles α , β , ϕ opposite sides a, b, c, respectively. Use the **law of cosines** to complete each formula below.

Result:

$$c^{2} = a^{2} + b^{2} - 2 a b \cos(\phi)$$

$$a^{2} = b^{2} + c^{2} - 2 b c \cos(\alpha)$$

$$b^{2} = c^{2} + a^{2} - 2 c a \cos(\beta)$$

 $\beta \phi$

The *Pythagorean theorem* is a special case of the *law of cosines*. **True**/False. (circle one).

Label the coordinates of each point on the unit circle.

4.4 Graphing sine and cosine - (a now-obvious invention from 1730 A.D.) (Section 1.5.2)

Graph sine and cosine as functions of the angle θ in radians over the range $0 \le \theta \le 2\pi$. The mathematician Euler was first to regard sine and cosine as <u>functions</u> (not just ratios of sides of a triangle).

4.5 & Ranges for arguments and return values for inverse trigonometric functions.

Determine all real return values and argument values for the following <u>real</u> trigonometric and inverse-trigonometric functions in computer languages such as Java, C^{++} , MotionGenesis, and MATLAB[®].

Possible return values	Function	Possible argument values	Note
$-1 \leq z \leq 1$	$z = \cos(x)$	$-\infty$ < x < ∞	
$-1 \leq z \leq 1$	$z = \sin(x)$	$-\infty$ < $x < \infty$	
$-\infty$ < $z < \infty$	$z = \tan(x)$	$-\infty$ < $x < \infty$	$x \neq \frac{-\pi}{2}, \frac{\pi}{2}, \frac{3\pi}{2}, \ldots$
$0 \leq z \leq \pi$	$z = a\cos(x)$	$-1 \leq x \leq 1$	
$-\pi/2 \le z \le \pi/2$	z = asin(x)	$-1 \leq x \leq 1$	
$-\pi/2$ < $z < \pi/2$	$z = \operatorname{atan}(x)$	$-\infty$ < x < ∞	
$-\pi \leq z \leq \pi$	$z = \operatorname{atan2}(y, x)$	$-\infty$ < y < ∞	$\mathtt{atan2}(0,0)$ is undefined
		$-\infty$ < $x < \infty$	

4.6 \clubsuit What is an angle? (Section 5.6).

Draw the "geometry equipment" listed in the 1st column of the following table. Complete the 2nd column with appropriate ranges for the angle θ (in degrees).

"Geometry equipment"	Draw	Appropriate range for θ
2 lines		$0^{\circ} \leq \theta \leq 90^{\circ}$
Vector and line		$0^{\circ} \leq \theta \leq 90^{\circ}$
2 vectors		$0^{\circ} \leq \theta \leq 180^{\circ}$
${f 2}$ vectors and a sense of positive rotation		-180° < θ \leq 180°
${f 2}$ vectors, a sense of \pm rotation, and time-history/continuity	Not applicable	$-\infty^{\circ} < \theta < \infty^{\circ}$

4.7 Calculating dot-products, cross-products, and angles between vectors. (Section 5.4.3).

The ${}^{\mathrm{a}}R^{\mathrm{b}}$ rotation table relates	${}^{\mathrm{a}}R^{\mathrm{b}}$
two sets of right-handed, or-	$\widehat{\mathbf{a}}_{\mathrm{x}}$
thogonal, unit vectors, namely	$\widehat{\mathbf{a}}_{\mathrm{v}}$
$\widehat{\mathbf{a}}_{x}, \ \widehat{\mathbf{a}}_{y}, \ \widehat{\mathbf{a}}_{z}$ and $\widehat{\mathbf{b}}_{x}, \ \widehat{\mathbf{b}}_{y}, \ \widehat{\mathbf{b}}_{z}.$	$\widehat{\mathbf{a}}_{\mathrm{z}}$

$\widehat{\mathbf{b}}_{\mathrm{x}}$	$\widehat{\mathbf{b}}_{\mathrm{y}}$	$\widehat{\mathbf{b}}_{\mathrm{z}}$
0.9623	-0.0842	0.2588
0.1701	0.9284	-0.3304
-0.2125	0.3619	0.9077

(a) Efficiently determine the following dot-products and angles between vectors (2⁺ significant digits). Then perform the following calculations involving $\vec{\mathbf{v}}_1 = 2 \, \hat{\mathbf{a}}_x$ and $\vec{\mathbf{v}}_2 = \hat{\mathbf{a}}_x + \hat{\mathbf{b}}_x$.

$\hat{\mathbf{a}}_{\mathrm{x}} \cdot \hat{\mathbf{a}}_{\mathrm{x}} = 1$	$\widehat{\mathbf{a}}_{\mathrm{y}} \cdot \widehat{\mathbf{a}}_{\mathrm{z}} = 0$	$\widehat{\mathbf{b}}_{\mathrm{z}} \cdot \widehat{\mathbf{b}}_{\mathrm{y}} = 0$
$\widehat{\mathbf{a}}_{\mathrm{x}} \cdot \widehat{\mathbf{b}}_{\mathrm{x}} = 0.9623$	$\widehat{\mathbf{a}}_{\mathrm{x}} \cdot \widehat{\mathbf{b}}_{\mathrm{y}} = -0.0842$	$\widehat{\mathbf{b}}_{\mathrm{z}} \cdot \widehat{\mathbf{a}}_{\mathrm{y}} = -0.3304$
$igstaclesized \left(\widehat{\mathbf{a}}_{\mathrm{y}}, \widehat{\mathbf{a}}_{\mathrm{y}} ight) \ = \ igstaclesized 0 \ igstaclesized^{\circ}$	$oldsymbol{ } oldsymbol{ } \left(\widehat{ \mathbf{ b} }_{\mathrm{z}}, \widehat{ \mathbf{ b} }_{\mathrm{x}} ight) \ = \ egin{array}{c} 90 \end{array}^{\mathrm{o}}$	
$oldsymbol{\angle} \left(\widehat{\mathbf{a}}_{\mathrm{y}}, \widehat{\mathbf{b}}_{\mathrm{y}} ight) \;=\; \left[\begin{array}{c} 21.81 \end{array} \right]^{\circ}$	$\mathbf{Z}(\widehat{\mathbf{b}}_{\mathrm{y}}, \widehat{\mathbf{a}}_{\mathrm{z}}) = 68.78^{\circ}$	
Result: $\vec{\mathbf{v}}_1 \cdot \vec{\mathbf{v}}_2 = 3.92$	$\mathbf{Z}(\vec{\mathbf{v}}_1, \vec{\mathbf{v}}_2) = \mathbf{I}$	7.897 °
$ec{\mathbf{v}}_1 imes ec{\mathbf{v}}_2 = egin{bmatrix} 0.51 \ 0.51 \ \end{array}$	$76 \hat{\mathbf{b}}_{\mathrm{y}} + 0.1684 \hat{\mathbf{b}}_{\mathrm{z}} = 0.42$	5 $\mathbf{\hat{a}}_{\mathrm{y}}$ + 0.3402 $\mathbf{\hat{a}}_{\mathrm{z}}$

(b) Express the unit vector $\hat{\mathbf{u}}$ in the direction of $3\,\hat{\mathbf{a}}_z + 4\,\mathbf{b}_z$ in terms of $\hat{\mathbf{a}}_z$ and \mathbf{b}_z . Express $\vec{\mathbf{v}} = \hat{\mathbf{a}}_y + \hat{\mathbf{b}}_y$ in terms of $\hat{\mathbf{a}}_x$, $\hat{\mathbf{a}}_y$, $\hat{\mathbf{a}}_z$. **Result:** $\hat{\mathbf{u}} = \underline{0.4386} \hat{\mathbf{a}}_z + \underline{0.5848} \hat{\mathbf{b}}_z$ $\vec{\mathbf{v}} = -0.0842 \hat{\mathbf{a}}_x + \underline{1.928} \hat{\mathbf{a}}_y + \underline{0.3619} \hat{\mathbf{a}}_z$

4.8 \clubsuit Efficient calculation of the inverse of a rotation matrix. (Section 5.4.2).

The following rotation matrix R relates two right-handed, orthogonal, unitary bases. Calculate its inverse by-hand (no calculator) in less than 30 seconds.

	0.3830	-0.6634	0.6428		[0.3830	0.9237	-0.0058
R =	0.9237	0.2795	-0.2620	\Rightarrow	$R^{-1} =$	-0.6634	0.2795	0.6941
	-0.0058	0.6941	0.7198			0.6428	-0.2620	0.7198

4.9 SohCahToa: Rotation tables for a landing gear system. (Section 5.5).

The figures below show three versions of the same landing gear system with a strut A that has a simple rotation relative to a fuselage N. Each figure has a different orientation for right-handed orthogonal unit vectors $\hat{\mathbf{n}}_x$, $\hat{\mathbf{n}}_y$, $\hat{\mathbf{n}}_z$ (fixed in N) and $\hat{\mathbf{a}}_x$, $\hat{\mathbf{a}}_y$, $\hat{\mathbf{a}}_z$ (fixed in A). <u>Redraw</u> $\hat{\mathbf{n}}_y$, $\hat{\mathbf{n}}_z$ and $\hat{\mathbf{a}}_x$, $\hat{\mathbf{a}}_y$, $\hat{\mathbf{a}}_z$ so it is **easy to see** sines and cosines. Then, form the ${}^{a}R^{n}$ rotation table for each figure.¹

${}^{\mathrm{a}}\!R^{\mathrm{n}}$	$\widehat{\mathbf{n}}_{\mathrm{x}}$	$\widehat{\mathbf{n}}_{\mathrm{y}}$	$\widehat{\mathbf{n}}_{\mathrm{z}}$
$\widehat{\mathbf{a}}_{\mathrm{x}}$	1	0	0
$\widehat{\mathbf{a}}_{y}$	0	$\cos(\theta)$	$\sin(\theta)$
$\widehat{\mathbf{a}}_{\mathrm{z}}$	0	$-{ m sin}(heta)$	$\cos(\theta)$

${}^{\mathrm{a}}\!R^{\mathrm{n}}$	$\widehat{\mathbf{n}}_{\mathrm{x}}$	$\widehat{\mathbf{n}}_{\mathrm{y}}$	$\widehat{\mathbf{n}}_{\mathrm{z}}$
$\widehat{\mathbf{a}}_{\mathrm{x}}$	$\cos(heta)$	$\sin(\theta)$	0
$\widehat{\mathbf{a}}_y$	$-\sin(\theta)$	$\cos(heta)$	0
$\widehat{\mathbf{a}}_{\mathrm{z}}$	0	0	1

${}^{\mathrm{a}}\!R^{\mathrm{n}}$	$\widehat{\mathbf{n}}_{\mathrm{x}}$	$\widehat{\mathbf{n}}_{\mathrm{y}}$	$\widehat{\mathbf{n}}_{\mathrm{z}}$
$\widehat{\mathbf{a}}_{\mathrm{x}}$	$\cos(heta)$	$-\mathrm{sin}(heta)$	0
$\widehat{\mathbf{a}}_y$	$\sin(\theta)$	$\cos(heta)$	0
$\widehat{\mathbf{a}}_{\mathrm{z}}$	0	0	1

¹Each figure has two missing vectors (e.g., $\hat{\mathbf{n}}_x$ and $\hat{\mathbf{a}}_x$ are missing from the first figure). Use the fact that each set of vectors is **right-handed** to add the missing vectors to each figure.