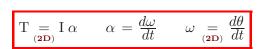
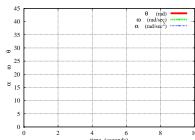
6.1 FE/EIT Review - Motion graph:

 $T \Rightarrow \alpha \Rightarrow \omega \Rightarrow \theta$

A wind turbine generates electricity from wind forces that create a time-dependent torque modeled as $T = 20 \frac{N \, m}{\rm sec} * t$. Measures of the wind turbine's angular acceleration α , angular velocity ω , and angle θ are related as shown below, where $I = 80 \, \mathrm{kg} \, \mathrm{m}^2$ is the relevant moment of inertia.



Graph α in $\frac{\text{rad}}{\text{sec}^2}$, ω in $\frac{\text{rad}}{\text{sec}}$, and θ in rad for $0 \le t \le 10$ sec. Use initial values (i.e, values at t = 0) of $\omega = 0$ and $\theta = 0$.



6.2 Drawing a reference frame and unit vector bases. (Section 8.2)

<u>Draw</u> a reference frame or rigid body B, shaped like a uniform-density doughnut (having a hole).

 $\underline{\mathbf{Draw}}$ a right-handed orthogonal bases fixed in B having unit vectors $\mathbf{b}_{\mathbf{x}}$, $\mathbf{b}_{\mathbf{y}}$, $\mathbf{b}_{\mathbf{z}}$.

<u>Draw</u> a different right-handed orthogonal bases fixed in B with unit vectors $\hat{\mathbf{b}}_1$, $\hat{\mathbf{b}}_2$, $\hat{\mathbf{b}}_3$.

Draw a properly located center of mass symbol \bullet and label this point as $B_{\rm cm}$.

<u>Draw</u> a point B_0 fixed on B, at a location different than B_{cm} .

6.3 \clubsuit Words and pictures for ${}^{b}R^{a}$, ${}^{N}\vec{\boldsymbol{\omega}}^{B}$, ${}^{N}\vec{\boldsymbol{\alpha}}^{B}$. (Chapters 5 and 8)

^b R ^a – Description (words)	$^{N}\vec{\omega}^{B}$ – Description (words)	$^{N}\vec{\boldsymbol{\alpha}}^{B}$ – Description (words)
$\mathbf{Draw}\ b \ \mathrm{and}\ a$	Draw I	3 and N

6.4 ♣ Definition of angular velocity? (Section 8.3.3).

The definition of angular velocity of $\vec{\boldsymbol{\omega}} \triangleq \dot{\theta} \, \vec{\mathbf{k}}$ is a functional operational definition, i.e., in general, it is useful for calculating angular velocity and proving its properties (2D or 3D). **True/False**

6.5 \ Textbook and Internet definitions of 3D angular velocity (Section 8.3).

Famed dynamicist Thomas Kane called angular velocity "one of the most misunderstood concepts in kinematics." Report two definitions of angular velocity and determine if the quantities appearing in the definition are **rigorously defined** - and whether they are generally applicable for 3D kinematics or only apply for simple angular velocity (described in Section 8.3.3).

Note: A definition should be able to **prove** important theorems [such as the angular velocity addition theorem of equation (8.4) and the golden rule for vector differentiation in equation (8.1)] and allow for angular velocity **calculations**.

	Source	Definition	Rigorously defined	Works for 3D kinematics?
Textbook:	List textbook	Record equation/definition	${ m Yes/No}$	Yes/No
Internet:	Provide .html	Record equation/definition	Yes/No	Yes/No

6.6 \$\text{ Concept: What objects have a unique angular velocity/acceleration? (Sections 8.3, 8.4).

 ${}^{N}\vec{\omega}^{S}$, the angular velocity of an object S in a reference frame N is to be determined.

In general and without ambiguity, S could be a (circle <u>all</u> appropriate objects):

Real number	Point	Reference frame	Mass center of a set of particles
Vector	Set of points	3D rigid body	Mass center of a rigid body
Matrix	Particle	Flexible body	Set of flexible bodies
3D orthogonal unit basis	Set of particles	Set of rigid bodies	System of particles and bodies

Repeat for ${}^{N}\vec{\boldsymbol{\alpha}}^{S}$, the angular acceleration of an object S in a reference frame N box appropriate objects

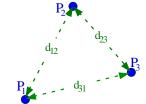
6.7 \$\text{ What is a reference frame, rigid body, and orthogonal basis? (Sections 4.1 and 8.2)

#	Statement (regard " <i>rigid body</i> " as a massive 2D or 3D rigid object)	True or False
a	A reference frame has all the attributes of a rigid body.	True/False
b	A rigid body has all the attributes of a reference frame.	True/False
c	A reference frame with time-invariant distributed mass is a rigid body.	True/False
d	A massless rigid object is a reference frame.	${ m True/False}$
е	The definition of a reference frame implies a sense of time.	True/False
f	A rigid body B may have an angular velocity in a reference frame N .	${ m True/False}$
g	A point Q has a uniquely-defined angular velocity in a reference frame N .	${ m True/False}$
h	The reference frame B implies unique orthogonal unit vectors $\hat{\mathbf{b}}_{x}$, $\hat{\mathbf{b}}_{y}$, $\hat{\mathbf{b}}_{z}$.	True/False
i	The right-handed orthogonal unit vectors $\hat{\mathbf{b}}_{x}$, $\hat{\mathbf{b}}_{y}$, $\hat{\mathbf{b}}_{z}$ imply a unique reference frame.	${ m True/False}$
j	The reference frame B implies a unique rigid frame.	True/False
k	A rigid frame with origin B_o and basis $\hat{\mathbf{b}}_x$, $\hat{\mathbf{b}}_y$, $\hat{\mathbf{b}}_z$ implies a unique reference frame.	${ m True/False}$

6.8 ♣ Concept: Reference frames and vector bases. (Sections 4.1 and 8.2)

Consider 3 distinct non-collinear points P_1 , P_2 , P_3 and the non-zero distances d_{12} , d_{23} , d_{31} between them. In general, determine if each object below can **always** be constructed from P_1 , P_2 , P_3 under the listed condition.

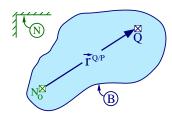
For each "Yes" answer, draw the object.



Condition	Object to be constructed	Object can be constructed?	If Yes, Draw
$d_{12}, d_{23}, d_{31} \text{ are constant}$	Vector basis that spans 3D space	${ m Yes/No}$	
$d_{12}, d_{23}, d_{31} \text{ are } \mathbf{variable}$	Vector basis that spans 3D space	${ m Yes/No}$	
$d_{12}, d_{23}, d_{31} \text{ are constant}$	Right-handed, orthogonal, unitary	basis Yes/No	
$d_{12}, d_{23}, d_{31} \text{ are } \mathbf{variable}$	Right-handed, orthogonal, unitary	basis Yes/No	
$d_{12}, d_{23}, d_{31} \text{ are constant}$	Unique reference frame	${ m Yes/No}$	
$d_{12}, d_{23}, d_{31} \text{ are } \mathbf{variable}$	Unique reference frame	${ m Yes/No}$	

6.9 • Vector differentiation concepts " $v = \omega r$ ". (Section 8.3).

Point Q is fixed on a rigid body B. Point $N_{\rm o}$ is fixed in a reference frame N and does not move on B. Complete the following proof that shows how $\vec{\bf v}$ (Q's velocity in N) can be written in terms of ${}^{N}\vec{\boldsymbol \omega}^{B}$ (B's angular velocity in N) and $\vec{\bf r}$ (Q's position vector from $N_{\rm o}$).



Mathematical statement		,	Reasoning (explain each step in the proof with a brief phrase)			
$ec{\mathbf{v}} \triangleq$	$\frac{{}^{N}\!d\vec{\mathbf{r}}}{dt}$,				Definition of Q 's velocity in N
=		+				
=	$\vec{0}$	+	${}^{N}\!ec{oldsymbol{\omega}}{}^{B}$	×	ř	

6.10 ♣ Concepts: What objects have a uniquely-defined angular velocity? (Section 8.3).

a.	It is possible to find the angular velocity of a	point	in a	reference frame.	True/False
b.	It is possible to find the angular velocity of a	3D rigid body	in a	particle.	${ m True/False}$
c.	It is possible to find the angular velocity of a	3D rigid body	in a	reference frame.	${ m True/False}$
d.	It is possible to find the angular velocity of a	reference frame	in a	3D rigid body.	${ m True/False}$
d.	It is possible to find the angular velocity of a	3D rigid basis	in a	reference frame.	True/False
e.	It is possible to find the angular velocity of a	reference frame	in a	flexible body.	${ m True/False}$
f.	It is possible to find the angular velocity of a	flexible body	in a	reference frame.	${ m True/False}$

6.11 A Rotational kinematics of a fire ladder. (Sections 8.3.3, 8.3.5, 8.3.6).

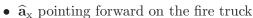
The following figure shows a fire truck chassis A traveling at constant speed in straight-line motion on Earth (A does not rotate relative to Earth). Earth is a **Newtonian reference frame** N.

A rigid hub B is connected to fire truck A by a revolute motor at point B_0 of B.

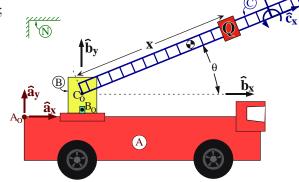
A rigid ladder C is connected to hub B by a revolute motor at point C_0 of C.

A fire-fighter Q (modeled as a particle of mass m) climbs ladder C.

Right-handed orthogonal unit vectors $\hat{\mathbf{a}}_{x}$, $\hat{\mathbf{a}}_{y}$, $\hat{\mathbf{a}}_{z}$; $\hat{\mathbf{b}}_{x}$, $\hat{\mathbf{b}}_{y}$, $\hat{\mathbf{b}}_{z}$; $\hat{\mathbf{c}}_{x}$, $\hat{\mathbf{c}}_{y}$, $\hat{\mathbf{c}}_{z}$; are fixed in A, B, C, with:



- $\hat{\mathbf{a}}_{v}$ vertically-upward and from B_{o} to C_{o}
- $\hat{\mathbf{b}}_{y} = \hat{\mathbf{a}}_{y}$ parallel to the axis of the revolute motor that connects B and A
- $\hat{\mathbf{b}}_{z} = \hat{\mathbf{c}}_{z}$ parallel to the axis of the revolute motor that connects B and C
- $\hat{\mathbf{c}}_{\mathrm{x}}$ directed from C_{o} to Q (along C's long axis)



Note: Visualize C's "Body yz" (or "Space zy") rotation sequence in N (e.g., with a ruler).

Quantity	Symbol	Type
$\hat{\mathbf{b}}_{y}$ measure of B's angular velocity in A	ω_B	Constant
Angle from $\hat{\mathbf{b}}_{\mathrm{x}}$ to $\hat{\mathbf{c}}_{\mathrm{x}}$ with ${}^{+}\hat{\mathbf{c}}_{\mathrm{z}}$ sense	θ	Variable

- (a) Complete the previous ${}^cR^b$ rotation table (to the right). Note: ${}^cR^b$ is unnecessary for the remainder of this problem.
- (b) Clarify the process to determine C's angular velocity in B. (Section 8.3.3).
 - ${}^B\vec{\boldsymbol{\omega}}^C$ is a <u>simple</u> angular velocity because $\hat{\mathbf{b}}_z$ is a vector fixed in <u>both</u> and _____
 - ${}^{B}\vec{\omega}^{C} =$, where is the angle between and .
 - The sign (\pm) is determined using the ____-hand rule (sweep from _____ to ____).
- (c) ${}^{A}\vec{\boldsymbol{\omega}}{}^{B} = \omega_{B} \,\hat{\mathbf{b}}_{y}$ is a **simple** angular velocity because $\hat{\mathbf{b}}_{y}$ is a vector fixed in **both** and .
- (d) Form C's angular velocity in N and express it in terms of $\hat{\mathbf{b}}_{x}$, $\hat{\mathbf{b}}_{y}$, $\hat{\mathbf{b}}_{z}$.

Result:
$$N\vec{\boldsymbol{\omega}}^{C} = \vec{\boldsymbol{\omega}} + \vec{\boldsymbol{\omega}} + \vec{\boldsymbol{\omega}} = \vec{\boldsymbol{0}} + \vec{\boldsymbol{b}}_{y} + \vec{\boldsymbol{b}}_{z}$$

- (e) When both ω_B and $\dot{\theta}$ are **constant**, ${}^N\vec{\boldsymbol{\alpha}}^C = \vec{\boldsymbol{0}}$. True/False.
- (f) Write the definition for C's angular acceleration in N and form $^{N}\vec{\boldsymbol{\alpha}}^{C}$. (Sections 8.4, 8.3).