Optional: Homework 6. Chapters 18, 19, 21.

Show work – except for **\$** fill-in-blanks.

Moments, torques, and static equilibrium.

6.1 & Concepts: Define and draw the moment of a force	 ' ' '
Write the definition for the moment of force $\vec{\mathbf{F}}^Q$ applied to point Q about point O . Draw a sketch with <i>each</i> part of your definition clearly labeled.	
Result: $\vec{\mathbf{M}}^{\vec{\mathbf{F}}^Q/O} \triangleq \mathbf{X}$	
	'

6.2 A Moment vs. torque (refer to Section 19.5)

Consider the various sets S of forces, their resultants $\vec{\mathbf{F}}^{S}$, and moments about points O, P, and Q. This example shows how to easily determine whether a moment is a torque.¹

 75% All torques are moments.
 True/False

 61% All moments are torques.
 True/False

 61% The moment of a couple about a point O is equal to the moment of the couple about any other point P
 True/False

1 Since	$\vec{\textbf{T}}^{S} \triangleq \vec{\textbf{M}}^{S/O}$	if $\vec{\mathbf{F}}^{S} = \vec{0}$	$\vec{0}$ (point <i>O</i> is <i>any</i> point)), the <i>moment</i> is a <i>torque</i> if $\vec{\mathbf{F}}^{S} = \vec{0}$ (it is that sin	nple).
--------------	--	-------------------------------------	---	---	--------

6.4 **♦** Drawing couples

Each figure below shows a single force $\vec{\mathbf{F}}$ applied tangentially to a point on the periphery of a circle. Complete each figure by drawing couples consisting of $\underline{2}$, $\underline{3}$, and $\underline{4}$ forces, respectively, so:

- Each force has magnitude $|\vec{\mathbf{F}}|$ and is applied at distinct points on the circle's periphery
- Each force is directed **tangent** to the circle's periphery
- The set of forces create a couple with non-zero torque

6.5 & Moments of forces about various points

Consider the six figures below, each which contain a set of forces. Circle the figure(s) in which the moment of its set of forces about points O, P, and Q all are equal, i.e.,

Moment around point O = Moment around point P = Moment around point Q

Note: All forces have the same magnitude. Forces that are not horizontal or vertical are 30° from vertical.