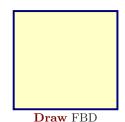
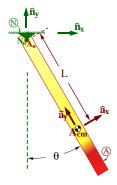
23.1.1 MG road-map: Projectile motion (2D)


A baseball (particle Q) flies over Earth N (a Newtonian reference frame). Aerodynamic forces on the baseball are modeled as $-b\vec{\mathbf{v}}$ ($\vec{\mathbf{v}}$ is Q's velocity in N).

 $\hat{\mathbf{n}}_{\mathbf{x}}$ is horizontally-right, $\hat{\mathbf{n}}_{\mathbf{y}}$ is vertically-upward, and $N_{\mathbf{o}}$ is home-plate (point fixed in N).

MG road-map for projectile motion x and y ($\hat{\mathbf{n}}_x$, $\hat{\mathbf{n}}_y$ measures of Q's position vector from N_o)

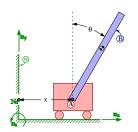
Variable	Translate/ Rotate	Direction (unit vector)	$\mathop{\rm System}_{S}$	$ \begin{array}{c} \operatorname{FBD} \\ \operatorname{of} S \end{array} $	About point	$MG\ road\text{-}map\ equation$	
x				Draw	Not applicable	• (= (22.1)	
y				Draw	Not applicable	• (= (22.1)	
x	Dot(,		.GetDynamics())			M otion G enesis command ⊚	
y	Do	t(<mark>,</mark>	. GetDynamics())			M otion G enesis command ⊚	



Solution and simulation link at $\underline{www.MotionGenesis.com} \Rightarrow \underline{Textbooks} \Rightarrow \underline{Resources}$.

23.1.2 MG road-map: Rigid body pendulum (2D)

A non-uniform density rigid rod A is attached at point A_0 of A by a frictionless revolute/pin joint to Earth N (Newtonian reference frame). The rod swings with a "pendulum angle" θ in a vertical plane that is perpendicular to unit vector $\hat{\mathbf{a}}_z$.


	Variable	Translate/ Rotate	Direction (unit vector)	$\mathop{\rm System}_S$	$\begin{array}{c} \operatorname{FBD} \\ \operatorname{of} S \end{array}$	About point	MG road-map equation
	θ				Draw		= (22.4)
ĺ	θ	Dot(,	$\operatorname{GetDyna}$	mics())	M otion G enesis command ⊚

Solution and simulation link at www.MotionGenesis.com \Rightarrow Textbooks \Rightarrow Resources.

23.1.3 MG road-map: Inverted pendulum on cart $(x \text{ and } \theta)$ (2D)

A rigid rod B is pinned to a massive cart A (modeled as a particle) that translates horizontally in a Newtonian reference frame N. The cart's position vector from a point N_0 fixed in N is $x \, \widehat{\mathbf{n}}_{\mathbf{x}}$ ($\widehat{\mathbf{n}}_{\mathbf{x}}$ is horizontally-right). B's swinging motion in N is in a vertical plane perpendicular to $\widehat{\mathbf{n}}_{\mathbf{z}}$ (a unit vector fixed in both B and N).

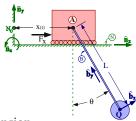
Variable	Translate/ Rotate	Direction (unit vector)	$\operatorname*{System}_{S}$	$ \begin{array}{c} \operatorname{FBD} \\ \operatorname{of} S \end{array} $	About point	$MG\ road\mbox{-}map\ equation$			
x				Draw	Not applicable	•(= (22.1)			
θ				Draw		• (= (22.4)			
x		Motion Genesis command ⊚							
θ						\mathbf{M} otion \mathbf{G} enesis command \odot			

Homework 19.8 and Chapter 30 complete these calculations.

23.1.4 MG road-map: Rotating rigid body (3D)

Shown right is a rotating rigid body B (e.g., tennis racquet, spacecraft, or aircraft) in a Newtonian reference frame N. Right-handed orthogonal unit vectors $\hat{\mathbf{b}}_{\mathbf{x}}$, $\hat{\mathbf{b}}_{\mathbf{y}}$, $\hat{\mathbf{b}}_{\mathbf{z}}$ are fixed in B.

Variable	Translate/ Rotate	Direction (unit vector)	$\operatorname*{System}_{S}$	$ \begin{array}{c} \operatorname{FBD} \\ \operatorname{of} S \end{array} $	About point	MG road-map equation
ω_x				Draw		= (22.4)
ω_y				Draw		• (<u>=</u> (22.4)
ω_z				Draw		· (<u>=</u> (22.4)
ω_x	Dot(,0	GetDynar	nics())	M otion G enesis command ⊚
ω_y	Dot(,	${f GetDynam}$	nics())		M otion G enesis command ⊚
ω_z	Dot(, <u> </u>	GetDynan	nics())	\mathbf{M} otion \mathbf{G} enesis command \odot



Solution and simulation link at $\underline{\mathbf{www.MotionGenesis.com}} \Rightarrow \underline{\mathbf{Textbooks}} \Rightarrow \underline{\mathbf{Resources}}$.

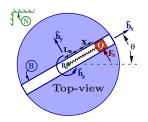
Note: The "about point" is somewhat arbitrary. When $B_{\rm cm}$ is chosen: ${}^{N}\vec{\rm H}^{B/B_{\rm cm}} = \vec{\rm I}^{B/B_{\rm cm}} \cdot {}^{N}\vec{\omega}^{B}$.

23.1.5 MG road-map: Bridge crane equations of motion (2D)

A payload (particle) Q is welded to a light rigid cable B which swings in a Newtonian frame N. Cable B is pinned to a massive trolley A that can move horizontally along a smooth slot fixed in N with a **specified** (known) displacement x(t). A translational actuator with force measure F_x connects trolly A to point N_0 of N.

MG road-map for pendulum angle θ , actuator force F_x , and cable tension

Variable	Translate/ Rotate	Direction (unit vector)	$\operatorname*{System}_{S}$	$\begin{array}{c} \operatorname{FBD} \\ \operatorname{of} S \end{array}$	About point	MG road-map equation
θ				Draw		
F_x				Draw	Not applicable	
Tension				Draw	Not applicable	
θ	Dot(, s	ystem(.GetDynami	ics())	\mathbf{M} otion \mathbf{G} enesis command ©
F_x	Dot(, Sys	tem()	.GetDynami	ics())	\mathbf{M} otion \mathbf{G} enesis command \odot


Student/Instructor version at $\underline{www.MotionGenesis.com} \Rightarrow \underline{Textbooks} \Rightarrow \underline{Resources}$

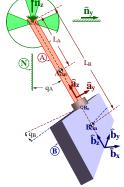
Note: Only the θ road-map equation is needed to predict this system's motion. The others are shown for illustrative purposes.

23.1.6 MG road-map: Particle on spinning slot (2D)

A particle Q slides on a straight slot B. The slot is connected with a revolute joint to a Newtonian frame N at point B_o so that B rotates in a horizontal plane perpendicular to $\hat{\mathbf{b}}_{\mathbf{z}}$ ($\hat{\mathbf{b}}_{\mathbf{z}}$ is vertically-upward and fixed in both B and N).

Note: Homework 18.8 completes the MG road-map calculations for x and θ .

$MG\ road ext{-}map$	for	x,	θ ,	and	F_N	$(\mathbf{b}_{\mathrm{y}})$	measure of normal	force on 6	Q from	m B


Variable	Translate/ Rotate	Direction (unit vector)	System S	$\begin{array}{c} \operatorname{FBD} \\ \operatorname{of} S \end{array}$	About point	MG road-map	$o\ equation$
x				Draw	Not applicable	• (=)
θ				Draw	$B_{ m o}$	• ()
F_N				Draw	Not applicable	• (=)
x	Dot(,		GetDynami	ics())	Motion Genesis of	command ©
θ	Dot(, Syste	em(<mark>)</mark> .	GetDynami	ics())	M otion G enesis of	command ©
F_N	Dot(,		GetDynami	ics())	Motion Genesis of	command ©

Note: The F_N road-map equation is needed to predict motion if a friction force depends on μF_N .

23.1.7 MG road-map: Motion of a chaotic double pendulum (3D)

Shown right is a mechanical model of a swinging babyboot (uniform plate B) attached by a shoelace (thin uniform rod A) to a fixed rigid support N. Rod A is attached to N by a revolute joint at point N_o of N. B is attached to A with a second revolute joint at point B_o so B can rotate freely about A's axis. Note: The revolute joints' axes are **perpendicular**, not parallel.

- The plate, rod, and support are rigid.
- The revolute joints are ideal (massless, frictionless, no slop/flexibility).
- Earth is a Newtonian reference frame N.
- Forces due to Earth's gravitation are uniform and constant.
- Other distance forces (electromagnetic and gravitational) and air-resistance are negligible.

Right-handed sets of unit vectors $\hat{\mathbf{n}}_x$, $\hat{\mathbf{n}}_y$, $\hat{\mathbf{n}}_z$; $\hat{\mathbf{a}}_x$, $\hat{\mathbf{a}}_y$, $\hat{\mathbf{a}}_z$; $\hat{\mathbf{b}}_x$, $\hat{\mathbf{b}}_y$, $\hat{\mathbf{b}}_z$ are fixed in N, A, B, respectively, with $\hat{\mathbf{n}}_x = \hat{\mathbf{a}}_x$ parallel to the revolute axis joining A to N, $\hat{\mathbf{n}}_z$ vertically-upward, $\hat{\mathbf{a}}_z = \hat{\mathbf{b}}_z$ parallel to the rod's long axis (and the revolute axis joining B to A), and $\hat{\mathbf{b}}_z$ perpendicular to plate B. q_A is the angle from $\hat{\mathbf{n}}_z$ to $\hat{\mathbf{a}}_z$ with $+\hat{\mathbf{n}}_x$ sense. q_B is the angle from $\hat{\mathbf{a}}_y$ to $\hat{\mathbf{b}}_y$ with $+\hat{\mathbf{a}}_z$ sense.

Variable	Translate/ Rotate	Direction (unit vector)	$\operatorname*{System}_{S}$	$\begin{array}{c} \operatorname{FBD} \\ \operatorname{of} S \end{array}$	About point	$MG\ road ext{-}map$	equation
q_A				Draw		• (=)
q_B				Draw		• (=	
q_A	Dot	(, Sy	ystem(.GetDyna	mics())	MotionGenesis o	command ©
q_B	Dot	(.GetDyna	mics())	Motion Genesis of	command ©

Solution and simulation link at $\underline{\mathbf{www.MotionGenesis.com}} \Rightarrow \underline{\mathbf{Textbooks}} \Rightarrow \underline{\mathbf{Resources}}$

Note: The "about point" for the q_B road-map can be shifted from B_0 to B_{cm} since $\hat{\mathbf{b}}_z \cdot \vec{\mathbf{M}}^{B/B_{cm}} = \hat{\mathbf{b}}_z \cdot \vec{\mathbf{M}}^{B/B_0}$.

23.1.8 MG road-map: Particle pendulum (2D) – angle and tension

A particle Q is welded to the distal end of a light rigid rope B. The rope's other end attaches to a point B_0 , fixed in a Newtonian reference frame N. The swinging motion of B and Q is in a vertical plane that is perpendicular to unit vector $\hat{\mathbf{b}}_z$.

MG road-map for pendulum angle θ and tension F_y ($\hat{\mathbf{b}}_y$ measure of force on Q from B)

Variable	Translate/ Rotate	Direction (unit vector)	System S	$ \begin{array}{c} \operatorname{FBD} \\ \operatorname{of} S \end{array} $	About point	$MG\ road\mbox{-}map\ equation$	mg
θ				Draw		· (= (22.4)	
F_y				Draw	Not applicable	• (= (22.1)	
θ						\mathbf{M} otion \mathbf{G} enesis command \odot	
F_y						\mathbf{M} otion \mathbf{G} enesis command \odot	Draw FBDs

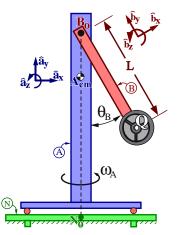
Solution and simulation link at $\underline{\mathbf{www.MotionGenesis.com}} \Rightarrow \underline{\mathbf{Textbooks}} \Rightarrow \underline{\mathbf{Resources}}$

Note: Only the θ road-map equation is needed to predict motion. The other is shown for illustrative purposes.

23.1.9 MG road-map: Dynamicist on a turntable (ice-skater)

A dynamics instructor stands on a spinning turntable and swings a heavy dumbbell Q inward and outward to change his spin-rate (similar to the ice-skater). Q is modeled as a particle rigidly attached (welded) to the end of the instructor's hands.

The schematic (below-right) shows a rigid body A (modeling the instructor's legs, torso, and head) that rotates (without friction) relative to Earth (a Newtonian reference frame N) about a vertical axis that is fixed in both A and N and which passes through both point N_0 of N and point $A_{\rm cm}$ (A's center of mass).


A massless rigid arm B (modeling the instructor's arms and hands) attaches to A by a revolute motor (shoulder/muscles) whose revolute axis is horizontal and located at point B_0 of B (B_0 lies on the vertical axis connecting N_0 and A_{cm}).

The motor (muscles) **specifies** B's angle θ_B relative to A to change in a known (prescribed) manner from 0 to π rad in 4 seconds $(\theta_B = \pi \frac{t}{4})$.

Right-handed orthogonal unit vectors $\hat{\mathbf{a}}_x$, $\hat{\mathbf{a}}_y$, $\hat{\mathbf{a}}_z$ and $\hat{\mathbf{b}}_x$, $\hat{\mathbf{b}}_y$, $\hat{\mathbf{b}}_z$ are fixed in A and B, respectively, with $\hat{\mathbf{a}}_y$ vertically-upward, $\hat{\mathbf{b}}_z = \hat{\mathbf{a}}_z$ parallel to the revolute motor's axis, and $\hat{\mathbf{b}}_y$ directed from Q to B_o .

Quantity	Symbol	Type	Value
Earth's gravitational constant	g	Constant	$9.8 \frac{m}{s^2}$
Distance between Q and B_o	L	Constant	$0.7~\mathrm{m}$
Mass of Q	m	Constant	12 kg
A's moment of inertia about line $\overline{A_{\rm cm} B_{\rm o}}$	I_{yy}	Constant	0.6 kg m^2
Angle from $\hat{\mathbf{a}}_{y}$ to $\hat{\mathbf{b}}_{y}$ with $+\hat{\mathbf{a}}_{z}$ sense	$\theta_{ m B}$	Specified	$0.25\pi\mathbf{t}\mathrm{rad}$
$\widehat{\mathbf{a}}_{\mathbf{y}}$ measure of A's angular velocity in N	ω_A	Variable	

Complete the MG road-map for the turntable's "spin-rate" ω_A (Note: The "about point" is not unique)

	complete the 120 com was for the talletable by spin rate was (rotted the about point is not amount									
	Translate/	Direction	System	FBD	About					
Variable	Rotate	(unit vector)	S	of S	point	$MG\ road\mbox{-}map\ equation$				
ω_A				Draw						
ω_A	Dot(, Syst	tem(.GetDynami	ics())	MotionGenesis command ⊚				

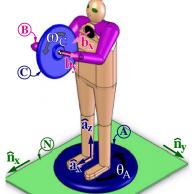
 $Student/Instructor\ version\ at\ \underline{www.MotionGenesis.com}\ \Rightarrow\ \underline{Textbooks}\ \Rightarrow\ \underline{Resources}$

23.1.10 MG road-map: Instructor on turntable with spinning wheel (3D)

The pictures to the right shows dynamicist Dr. G standing on a spinning turntable and holding a spinning bicycle wheel.

The mechanical model (below right) has a rigid body A (modeling the turntable, legs, torso, and head) that can freely rotate relative to Earth (Newtonian reference frame N) about a vertical axis that is fixed in both A and N and which passes through the center of the turntable (point N_o) and A_{cm} (A's center of mass).

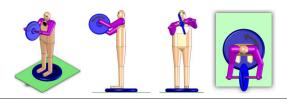
A light (massless) rigid frame B (modeling the shoulders, arms, hands, and a portion of the bicycle wheel's axle) is attached to A by a revolute motor at point B_0 of B (B_0 lies on the vertical axis passing through A_{cm}). The motor's revolute axis passes through points B_0 and C_{cm} , is horizontal, and is parallel to $\hat{\mathbf{b}}_{x} = \hat{\mathbf{a}}_{x}$.


A rigid bicycle wheel C is attached to B by a frictionless revolute joint whose axis passes through $C_{\rm cm}$ (C's center of mass) and is parallel to $\widehat{\mathbf{b}}_{\rm v}$.

Right-handed orthogonal unit vectors $\widehat{\mathbf{a}}_x$, $\widehat{\mathbf{a}}_y$, $\widehat{\mathbf{a}}_z$ and $\widehat{\mathbf{n}}_x$, $\widehat{\mathbf{n}}_y$, $\widehat{\mathbf{n}}_z$ are fixed in A and N, respectively. Initially $\widehat{\mathbf{a}}_i = \widehat{\mathbf{n}}_i$ (i = x, y, z), and then rigid body A is subjected to a right-handed rotation characterized by $\theta_A \widehat{\mathbf{a}}_z$ where $\widehat{\mathbf{a}}_z = \widehat{\mathbf{n}}_z$ is directed vertically-upward and $\widehat{\mathbf{a}}_x$ points from Dr. G's back to front (parallel to the axis of the revolute motor connecting A and B).

Unit vectors $\hat{\mathbf{b}}_x$, $\hat{\mathbf{b}}_y$, $\hat{\mathbf{b}}_z$ are fixed in B. Initially $\hat{\mathbf{b}}_i = \hat{\mathbf{a}}_i$ (i = x, y, z), then B is subjected to a θ_B ($\hat{\mathbf{a}}_x = \hat{\mathbf{b}}_x$) right-handed rotation in A where $\hat{\mathbf{b}}_y$ is directed along the wheel's axle from Dr. G's right-to-left hand. Dr. G changes θ_B in a **specified** sinusoid manner with amplitude 30° and period 4 seconds.

Quantity	Sym	bol and type	Value
Mass of C	m^C	Constant	2 kg
Distance between $B_{\rm o}$ and $C_{\rm cm}$	L_x	Constant	$0.5 \mathrm{m}$
A's moment of inertia about $B_{\rm o}$ for $\hat{\mathbf{a}}_{\rm z}$	I_{zz}^A	Constant	0.64 kg m^2
C's moment of inertia about $C_{\rm cm}$ for $\hat{\mathbf{b}}_{\rm x}$	I^C	Constant	0.12 kg m^2
C 's moment of inertia about $C_{\rm cm}$ for $\hat{\mathbf{b}}_{\rm y}$	J^C	Constant	$0.24~\mathrm{kg}\mathrm{m}^2$
Angle from $\hat{\mathbf{n}}_{\mathrm{x}}$ to $\hat{\mathbf{a}}_{\mathrm{x}}$ with ${}^{+}\hat{\mathbf{n}}_{\mathrm{z}}$ sense	$\theta_{ m A}$	Variable	
Angle from $\hat{\mathbf{a}}_{\mathrm{y}}$ to $\hat{\mathbf{b}}_{\mathrm{y}}$ with ${}^{+}\hat{\mathbf{a}}_{\mathrm{x}}$ sense	$ heta_{ m B}$	Specified	$\frac{\pi}{6}\sin(\frac{\pi}{2}t)$
$\hat{\mathbf{b}}_{y}$ measure of C 's angular velocity in B	ω_C	Variable	0 2



Courtesy Doug Schwandt Purchase turntable/bicycle wheel at Arbor-scientific

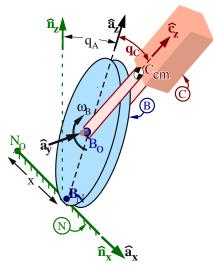
Complete the MG road-map for θ_A and ω_C (the "about points" are not unique).

Variable	Translate/ Rotate	Direction (unit vector)	System S	$\begin{array}{c} \operatorname{FBD} \\ \operatorname{of} S \end{array}$	About point	MG road-map equation
$ heta_{ m A}$				Draw		
ω_C				Draw		
$\theta_{ m A}$	Dot(, Syst	sem()	.GetDynami	ics())	M otion G enesis command ⊚
ω_C	Dot(,		$.$ Get ${f Dynami}$	ics())	\mathbf{M} otion \mathbf{G} enesis command \odot

Student/Instructor version at <u>www.MotionGenesis.com</u> \Rightarrow <u>Textbooks</u> \Rightarrow <u>Resources</u>

23.1.11 MG road-map: Bear riding a unicycle on a high-wire (3D)

The figures to the right show a (massless) pulley-wheel B that <u>rolls</u> along a taut (rigid) cable N (fixed on Earth, a Newtonian frame). Rigid body C (seat, rider, and balancing poles) attach to B with an ideal revolute motor at B_0 (B's centroid). The motor axis is aligned with B's symmetry axis.


Right-handed orthogonal unit vectors $\hat{\mathbf{n}}_{x}$, $\hat{\mathbf{n}}_{y}$, $\hat{\mathbf{n}}_{z}$ are fixed in N with $\hat{\mathbf{n}}_{z}$ vertically-upward and $\hat{\mathbf{n}}_{x}$ directed horizontally along the cable from a point N_{o} (fixed in N) to B_{N} (B's rolling point of contact with N).

Right-handed orthogonal unit vectors $\hat{\mathbf{a}}_x$, $\hat{\mathbf{a}}_y$, $\hat{\mathbf{a}}_z$ are directed with $\hat{\mathbf{a}}_x = \hat{\mathbf{n}}_x$, $\hat{\mathbf{a}}_v$ parallel to the motor axis, and $\hat{\mathbf{a}}_z$ from B_N to B_o .

Right-handed unit vectors $\hat{\mathbf{c}}_{x}$, $\hat{\mathbf{c}}_{y}$, $\hat{\mathbf{c}}_{z}$ are parallel to C's principal inertia axes about C_{cm} (C's center of mass), with $\hat{\mathbf{c}}_{y} = \hat{\mathbf{a}}_{y}$ and $\hat{\mathbf{c}}_{z}$ from B_{o} to C_{cm} (with balancing poles, C_{cm} is below B_{o} and L_{C} is negative).

_ 0 ++ + Cm (++			,
Quantity	Symbol	Type	Value
Earth's gravitational constant	g	Constant	9.8 m/s^2
Radius of B	r_B	Constant	30 cm
$\hat{\mathbf{c}}_{\mathbf{z}}$ measure of C_{cm} 's position vector from B_{o}	L_C	Constant	$-35~\mathrm{cm}$
Mass of C	m^C	Constant	2 kg
C 's moment of inertia about $C_{\rm cm}$ for $\hat{\mathbf{c}}_{\rm x}$	I	Constant	3.4 kg m^2
C 's moment of inertia about $C_{\rm cm}$ for $\widehat{\mathbf{c}}_{\rm y}$	J	Constant	3.2 kg m^2
C 's moment of inertia about $C_{\rm cm}$ for $\hat{\mathbf{c}}_{\rm z}$	K	Constant	2.8 kg m^2
$\hat{\mathbf{a}}_{\mathbf{y}}$ measure of motor torque on B from C	T_y	Specified	below
Angle from $\hat{\mathbf{n}}_z$ to $\hat{\mathbf{a}}_z$ with $-\hat{\mathbf{n}}_x$ sense	q_A	Variable	
$\hat{\mathbf{a}}_{\mathbf{v}}$ measure of ${}^{A}\vec{\boldsymbol{\omega}}^{B}$ (${}^{A}\vec{\boldsymbol{\omega}}^{B}=\omega_{B}\hat{\mathbf{a}}_{\mathbf{v}}$)	ω_B	Variable	
Angle from $\hat{\mathbf{a}}_{\mathbf{z}}$ to $\hat{\mathbf{c}}_{\mathbf{z}}$ with $+\hat{\mathbf{a}}_{\mathbf{y}}$ sense	q_C	Variable	
$\hat{\mathbf{n}}_{\mathbf{x}}$ measure of $\vec{\mathbf{r}}^{B_N/N_o}$	x	Variable	

Form a complete set of MG road-maps for this systems's equations of motion (solution is not unique). If necessary, add more MG road-maps so there are the same number of equations as unknowns.

Variable	Translate/ Rotate	Direction (unit vector)	$\mathop{\rm System}_{S}$	$_{\mathrm{of}}^{\mathrm{FBD}}$	About point	$MG\ road ext{-}may$	$p\ equation$	Additional Unknowns
q_A				Draw				
ω_B				Draw				
q_C				Draw				
x				Draw				
* Addit	tional scalar	constraint eq	uation(s)	:				
MG road-	map for ω_B is	s not unique						
q_A	Dot	(System(). Get Dynam	ics())	M otion G enesis	command ©
ω_B	Dot	(,	System	m(). Get Dynam	ics())	Motion Genesis	command ©
q_C	Dot	(C	C.GetDynam	ics())	Motion Genesis	command ©
x	Dot	(System(). Get Dynam	ics()	Motion Genesis	command ©
	Solve	eDt(x' - r*v	7B = 0,	x')			Motion Genesis	command ©

To move the unicycle to $x_{\text{Desired}} = 10 \text{ m}$, use a "PD control law" with $T_y = -0.3 (x - x_{\text{Desired}}) - 0.6 \dot{x}$.

Optional simulation:

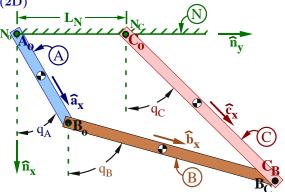
Plot x, q_A , q_C for $0 \le t \le 12$ sec.

Use initial values:

$$x = 0 \text{ m}$$
 $q_A = 10^{\circ}$ $q_C = 0^{\circ}$

$$\dot{x} = 0 \qquad \dot{q}_A = 0 \qquad \dot{q}_C = 0$$

The figure to the right shows a planar four-bar linkage consisting of frictionless-pin-connected uniform rigid links A, B, and C and ground N.


- Link A connects to N and B at points A_0 and A_B
- Link B connects to A and C at points B_0 and B_C
- Link C connects to N and B at points C_o and C_B
- Point N_o of N is coincident with A_o
- Point N_C of N is coincident with C_o

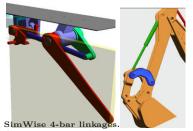
Right-handed orthogonal unit vectors $\hat{\mathbf{a}}_i$, $\hat{\mathbf{b}}_i$, $\hat{\mathbf{c}}_i$, $\hat{\mathbf{n}}_i$ (i = x, y, z) are fixed in A, B, C, N, with:

- $\hat{\mathbf{a}}_{\mathbf{x}}$ directed from $A_{\mathbf{o}}$ to A_{B}
- $\hat{\mathbf{b}}_{\mathbf{x}}$ directed from $B_{\mathbf{o}}$ to B_{C}
- $\widehat{\mathbf{c}}_{\mathbf{x}}$ directed from $C_{\mathbf{o}}$ to C_B
- $\hat{\mathbf{n}}_{\mathbf{x}}$ vertically-downward
- $\widehat{\mathbf{n}}_{\mathbf{v}}$ directed from $N_{\mathbf{o}}$ to N_C
- $\hat{\mathbf{a}}_z = \hat{\mathbf{b}}_z = \hat{\mathbf{c}}_z = \hat{\mathbf{n}}_z$ parallel to pin axes

As in Hw 10.8, create the following "loop equation" and dot-product with $\hat{\mathbf{n}}_{x}$ and $\hat{\mathbf{n}}_{y}$.

$$L_A \, \widehat{\mathbf{a}}_{\mathbf{x}} + L_B \, \widehat{\mathbf{b}}_{\mathbf{x}} - L_C \, \widehat{\mathbf{c}}_{\mathbf{x}} - L_N \, \widehat{\mathbf{n}}_{\mathbf{y}} = \vec{\mathbf{0}}$$

Quantity	Symbol	Value
Length of link A	L_A	1 m
Length of link B	L_B	2 m
Length of link C	L_C	2 m
Distance between $N_{\rm o}$ and $N_{\rm C}$	L_N	1 m
Mass of A	m^{A}	10 kg
Mass of B	m^{B}	20 kg
Mass of C	m^C	20 kg
Earth's gravitational acceleration	g	$9.81 \frac{m}{s^2}$
$\hat{\mathbf{n}}_{\mathbf{y}}$ measure of force applied to C_B	H	$200\ \mathrm{N}$
Angle from $\hat{\mathbf{n}}_{\mathrm{x}}$ to $\hat{\mathbf{a}}_{\mathrm{x}}$ with $+\hat{\mathbf{n}}_{\mathrm{z}}$ sense	q_A	Variable
Angle from $\hat{\mathbf{n}}_{\mathrm{x}}$ to $\hat{\mathbf{b}}_{\mathrm{x}}$ with $+\hat{\mathbf{n}}_{\mathrm{z}}$ sense	q_B	Variable
Angle from $\hat{\mathbf{n}}_{\mathrm{x}}$ to $\hat{\mathbf{c}}_{\mathrm{x}}$ with $+\hat{\mathbf{n}}_{\mathrm{z}}$ sense	q_C	Variable


Complete the following MG road-map to determine this systems's static configuration.

Variable	Translate/ Rotate	Direction (unit vector)	$\operatorname*{System}_{S}$	$_{\mathrm{of}}^{\mathrm{FBD}}$	About point				
				Draw		F_x^C, F_y^C			
				Draw		F_x^C, F_y^C			
				Draw		F_x^C, F_y^C			
* Add:	* Additional scalar constraint equation: $ -L_A \sin(q_A) \dot{q}_A - L_B \sin(q_B) \dot{q}_B + L_C \sin(q_C) \dot{q}_C = 0 $								
* Add:	* Additional scalar constraint equation: $L_A \cos(q_A) \dot{q}_A + L_B \cos(q_B) \dot{q}_B - L_C \cos(q_C) \dot{q}_C = 0$								
q_A	Dot	(,	Syste	em(<mark>)</mark>	.GetSta	ratics()) MotionGenesis command ©			
q_B	Dot	(,			.GetSta	ratics()) MotionGenesis command ©			
q_C	Dot	(,		C	GetSta	ratics()) MotionGenesis command ©			

Determine the **static equilibrium** values of q_A , q_B , q_C . Use your intuition (guess), circle the **stable** solution.

Solution 1	$q_A \approx$	20.0°	$q_B \approx 71.7^{\circ}$	$q_C = 38.3^{\circ}$
Solution 2	$q_A \approx$	249.3°	$q_B \approx 140.2^{\circ}$	$q_C = 199.1^{\circ}$
Solution 3	$q_A \approx$	30.7°	$q_B \approx 226.1^{\circ}$	$q_C = 254.7^{\circ}$

Solution at $\underline{\mathbf{www.MotionGenesis.com}} \Rightarrow \underline{\mathbf{Get\ Started}} \Rightarrow \mathbf{Four\text{-}bar\ linkage}$

Courtesy Design Simulation Technology