Notation

INOLATION		
Symbol	Meaning	
t, ρ	$t \text{ time}, \qquad \rho \text{ density}$	
π , e , i	$\pi \approx 3.14159265358979323846$ $e \approx 2.71828182845904523536$ $i \triangleq \sqrt{-1}$	
g, G	Gravitational constants. Earth: $g \approx 9.80665 \frac{\text{m}}{\text{s}^2}$ Universal: $G \approx 6.673 \times 10^{-11} \frac{\text{m}^3}{\text{kg s}^2}$	
μ_s, μ_k, e_r	Coefficient of static and kinetic friction. Coefficient of restitution.	
$\frac{\partial y}{\partial x} \frac{\partial^2 y}{\partial x^2}$	First, second partial derivative of the scalar y with respect to the scalar x .	
$\frac{dy}{dt}$, \dot{y} , y'	Ordinary time derivative of y .	
$\frac{d^2y}{dt^2}, \ddot{y}, y''$	Second ordinary time derivative of y .	
$\int_{\bar{t}=0}^{t} y(\bar{t}) d\bar{t}$	Definite integral of $y(\bar{t})$ from $\bar{t} = 0$ to $\bar{t} = t$	
Vectors and dyadics		
$ec{\mathbf{v}}$	Vector $\vec{\mathbf{v}}$ (bold-faced font)	
$\vec{0}$	Zero vector (bold-faced font)	
$\left ec{\mathbf{v}} ight $	Magnitude of vector $\vec{\mathbf{v}}$. $ \vec{\mathbf{v}} = (\vec{\mathbf{v}} \cdot \vec{\mathbf{v}})^{1/2} = \sqrt{\vec{\mathbf{v}} \cdot \vec{\mathbf{v}}}$	
$ec{\mathbf{v}}^n$	Vector $\vec{\mathbf{v}}$ raised to the <i>n</i> power. $\vec{\mathbf{v}}^n \triangleq \vec{\mathbf{v}} ^n = (\vec{\mathbf{v}} \cdot \vec{\mathbf{v}})^{\frac{n}{2}}$, e.g., $\vec{\mathbf{v}}^2 \triangleq \vec{\mathbf{v}} ^2 = \vec{\mathbf{v}} \cdot \vec{\mathbf{v}}$	
$[ec{\mathbf{v}}]_b$	3×1 matrix representation of the vector $\vec{\mathbf{v}}$ expressed in the b basis.	
	Similarly, $ \vec{\mathbf{D}} $ is the 3×3 matrix representation of the dyadic $\vec{\mathbf{D}}$ expressed in the b basis.	
$\left[\begin{array}{c}2\\3\\4\end{array}\right]_b$		
$\begin{bmatrix} 3 \\ 4 \end{bmatrix}$	3×1 matrix representation of the vector $2\hat{\mathbf{b}}_{x} + 3\hat{\mathbf{b}}_{y} + 4\hat{\mathbf{b}}_{z}$	
	Similarly, $\begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{bmatrix}_b$ represents dyadic $1\hat{\mathbf{b}}_x\hat{\mathbf{b}}_x + 2\hat{\mathbf{b}}_x\hat{\mathbf{b}}_y + 3\hat{\mathbf{b}}_x\hat{\mathbf{b}}_z + 4\hat{\mathbf{b}}_y\hat{\mathbf{b}}_x + 5\hat{\mathbf{b}}_y\hat{\mathbf{b}}_y \dots$	
$\overset{ ightarrow}{\mathbf{D}}$	Dyadic $\overrightarrow{\mathbf{D}}$ (bold-faced font)	
$\overset{\Rightarrow}{0},\ \overset{\Rightarrow}{1}$	Zero dyadic, unit dyadic	
$ec{\mathbf{a}} imes ec{\mathbf{b}}$	Cross product of vector $\vec{\mathbf{a}}$ with vector $\vec{\mathbf{b}}$	
$\vec{\mathbf{a}}\cdot\vec{\mathbf{b}}$	Dot product of vector $\vec{\mathbf{a}}$ with vector $\vec{\mathbf{b}}$	
$\frac{{}^{N}\!\partial\vec{\mathbf{v}}}{\partial x}$	Partial derivative in reference frame N of the vector $\vec{\mathbf{v}}$ with respect to x	
$\frac{{}^{N}\!d\vec{\mathbf{v}}}{dt}$	Ordinary time derivative in reference frame N of the vector $\vec{\mathbf{v}}$	
$\frac{\frac{N_d^2 \vec{\mathbf{v}}}{dt^2}}{\vec{\mathbf{v}}f}$	Second ordinary time derivative in reference frame N of the vector $\vec{\mathbf{v}}$	
$\vec{\nabla} f$	Gradient of scalar function f (results in a vector)	
Mass, center of mass, inertia		
$S_{\rm cm}$	The subscript cm denotes the mass center of a body or system S	
m^S	Mass of S (S is a particle, body, or system of particles and bodies)	
$ec{\mathbf{I}}^{S/O}$	Inertia dyadic of S about point O (S is a particle, body, or system of particles and bodies)	
$\left[\mathrm{I}^{S/O}\right]_b$	Inertia matrix of S about point O for the b basis	
$ec{\mathbf{I}}_{\widehat{\mathbf{v}}}^{S/O}$	Inertia vector of S about point O for the unit vector $\hat{\mathbf{v}}$	
$\mathrm{I}_{\widehat{\mathbf{u}}\widehat{\mathbf{v}}}^{S/O}$	Inertia scalar (moment or product) of S about point O for the unit vectors $\hat{\mathbf{u}}$ and $\hat{\mathbf{v}}$	

Rotational kinematics		
${}^{\mathrm{a}}R^{\mathrm{b}}$	Rotation matrix relating the right-handed orthogonal unit vectors $\hat{\mathbf{a}}_{\mathrm{x}}$, $\hat{\mathbf{a}}_{\mathrm{y}}$, $\hat{\mathbf{a}}_{\mathrm{z}}$	
	to the right-handed orthogonal unit vectors $\hat{\mathbf{b}}_{\mathrm{x}}, \hat{\mathbf{b}}_{\mathrm{y}}, \hat{\mathbf{b}}_{\mathrm{z}}$.	
${}^{N}\!ec{oldsymbol{\omega}}{}^{B}$	Angular velocity of reference frame B in reference frame N	
$^{N}\!ec{oldsymbol{lpha}}^{B}$	Angular acceleration of reference frame B in reference frame N	
Translational kinematics		
$ec{\mathbf{r}}^{Q/O}$	Position vector of point Q from point O	
$N_{\overrightarrow{\mathbf{V}}}^{Q}$	Velocity of point Q in reference frame N	
$N_{\overrightarrow{\mathbf{V}}}Q/R$	Velocity of point Q relative to point R in reference frame N $({}^{N}\vec{\mathbf{v}}^{Q/R} = {}^{N}\vec{\mathbf{v}}^{Q} - {}^{N}\vec{\mathbf{v}}^{R})$	
$^{N}ec{\mathbf{a}}^{Q}$	Acceleration of point Q in reference frame N	
Momentum, inertia force, kinetic energy in a reference frame N		
$^{N}\vec{\mathrm{L}}^{S}$	Translational momentum of S in reference frame N (S is a particle, body, or massive system)	
$^{N} \vec{\mathrm{H}}^{S/O}$	Angular momentum of S about point O in reference frame N (S is a massive system)	
${}^{N}\mathbf{L}_{u_{r}}^{S}$ ${}^{N}\mathbf{\vec{F}}^{S}$	Generalized momentum of S in reference frame N for the generalized speed u_r	
	Effective force $(m \vec{a})$ of S in N (S is a particle, body, or system of particles and bodies)	
$^{N}ec{\mathbf{M}}^{S/O}$	Moment of effective forces $(\vec{\mathbf{r}} \times m \vec{\mathbf{a}})$ of S about point O in reference frame N	
${}^{N}\mathcal{F}_{u_r}^{S} \ {}^{N}K^{S}$	Generalized effective force of S in reference frame N for the generalized speed u_r	
	Kinetic energy of S in reference frame N (S is a particle, body, or massive system)	
${}^N\!\mathcal{L}^S$	Lagrangian of S in reference frame N	
Forces, moments, torque		
$ec{\mathbf{F}}^{Q/R}$	Force on point Q by point R	
$ec{\mathbf{F}}^{S}$	Resultant of forces on the point, particle, body, or system S	
$ec{\mathbf{M}}^{S/O}$	Moment of the set S of bound vectors about point O	
$ec{ extbf{T}}^A$	Torque of the couple associated with the replacement of forces on rigid object A	
$ec{ extbf{T}}^{A/B}$	Torque of the couple associated with forces on rigid object A by rigid object B	
Power, work, potential energy, and generalized force in a reference frame N		
$N_{ m P} ec{{f F}}^{Q/R}$	Power due to the force on point Q by point R	
$^{N}\!\mathrm{P}^{S}$	Power due to all the forces on point, body, or system S and S 's motion in N	
$^{N}\mathrm{W}^{S}$	Work due to all forces on point, body, or system S and S 's motion in N	
$^{N}U^{ec{\mathbf{F}}^{Q}}$	Potential energy due to force on point Q and Q 's position in N	
$^{N}U^{S}$	Potential energy due to all forces on system S and S 's configuration in N	
$\mathcal{F}^Q_{\!u_r}$	Generalized force (implied Newtonian reference frame) associated with force $\vec{\mathbf{F}}^Q$ and general-	
	ized speed u_r . Similarly, $\mathcal{F}_{u_r}^{Q/R}$ is generalized force for force $\vec{\mathbf{F}}^{Q/R}$.	
Current, voltage, electrical elements		
i, v	current, voltage Note: $j \triangleq \sqrt{-1}$ when i is electrical current.	
R, C, L	resistance, capacitance, inductance	

