
Chapter 27

MIPSI: Classic particle pendulum
(www.MotionGenesis.com ⇒ Textbooks ⇒ Resources)

The pendulum to the right consists of a small heavy metallic ball
tied to a light cable which is connected to the ceiling. This chapter
investigates this system with MIPSI process (Modeling, Identifiers,

Physics, Simplify/solve, Interpret/design) and shows how to use various
methods to form its equations of motion.

Newton’s law �F = m�a Angular momentum principle
Euler’s rigid body equation Power/energy-rate principle
Conservation of mechanical energy Lagrange’s method Reproduction of Foucault pendulum.

Pantheon, Paris France (Andrew Schmidt).

27.1 Modeling the classic particle pendulum

A model is a simplified representation of a complex system. Creating an accurate model requires good
judgement to differentiate between what can be simplified and what cannot. Capturing a system’s
essence and extracting its meaningful parts is essential to engineering analysis and design – yet is difficult
to teach. Some assumptions an engineer may make when modeling a pendulum are:

1 The support is rigid (inflexible) and the cable is firmly (not loosely) attached to it.
The cable is rigid (inflexible) and does not break.
Analyzing a flexible cable that elongates/vibrates (see Homework 5.5) or a cable that supports tension
but not compression is significantly more difficult than analyzing a straight inextensible cable.1

2 The cable is massless (significantly lighter than the objects it supports).
One indicator of this assumption’s validity is whether or not the cable’s kinetic energy is substantially
smaller than the attached particle’s kinetic energy. A small mass or moment of inertia cannot be
ignored if it is associated with large kinetic energy.2 Kinetic energy can help for modeling a massive
spring by determining how to lump some of the spring’s mass with each body attached to the spring.

3 The massive object at the distal end is a particle or rigid body.
This assumption allows replacement of forces (e.g., gravity) on the object by a simpler equivalent set.

1One can test the inextensible-cable-assumption by numerical simulation of a pendulum with an extensible cable and
observing that, as the cable’s stiffness is increased, the solution approaches the rigid-cable solution. Note: Computer time to
numerically simulate motion increases with cable stiffness. When the period of the cable’s extensional oscillations are much
shorter than the pendulum’s period, the system is said to have stiff differential equations.

2For example, it may be unreasonable to ignore the small moment of inertia associated with a rapidly spinning small
motor that is geared to a slowly spinning large object. Rotational kinetic energy scales with I ω2, so a rapidly spinning small
motor may have more kinetic energy than a slowly spinning massive object.
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4 The massive body can be modeled as a particle (body is small and dense).
This assumption seems reasonable if the the body’s orientation is not of interest and the body’s
rotational kinetic energy is substantially smaller than its translational kinetic energy.

5 The cable has a simple rotation relative to the room (simple angular velocity).
This implies the system’s motion can be described with one dependent variable (e.g., θ), and is valid
if motion occurs over a short period of time (less than a few hours). Over longer periods of time, the
Earth’s rotation causes the particle to move out of plane (Foucault pendulum).

6 The Earth is a Newtonian reference frame.
Newton’s law of motion �F = m�a requires a non-accelerating and non-rotating reference frame.
Although Earth is rotating (daily around its axis and yearly about the sun), the acceleration associated with
these motions is assumed to be insignificantly small. Foucault showed the Earth’s rotation has a
substantial effect on daily motions of a simple pendulum.

7 Earth’s gravitational attraction can be approximated as a uniform field.
In reality, gravitational forces vary as an inverse-square law. Hence, Earth’s gravitational forces on
the pendulum decrease as the pendulum swings up (away from Earth) and increase as it swings down
(closer to Earth). Note: Uniform gravity is not used for analyzing satellite orientation (in motion for years).

8 Other than Earth, gravitational forces are negligible.
Other massive objects (tables, people, the moon, sun, black holes, etc.) have negligible gravitational at-
traction. An example helps validate this assumption. The magnitude of gravitational force between
two lead spheres of radius 1 ft (30 cm) and mass 3035 lbm (1377 kg) whose centers are only 3 ft (91 cm)

apart (closest point is 1 foot apart) is 0.000034 lbf (0.00015 N), ≈ 90, 000, 000 times smaller than Earth’s
gravitational force exerted on the sphere.

9 Many forces (aerodynamic, friction, magnetic, electrostatic) are negligible.
Note: Neglecting other forces (e.g., air resistance) is questionable as they affect long-term behavior.

27.2 Identifiers for the classic particle pendulum

The schematic to the right shows a light (massless) inextensible cable B with a particle Q attached to its
distal end. The cable is connected to the ceiling N (a Newtonian reference frame) at point No.
Right-handed orthogonal unit vectors n̂x, n̂y, n̂z are fixed in N with n̂x

horizontally-right and n̂y vertically-upward. Right-handed orthogonal unit
vectors b̂x, b̂y, b̂z are fixed in B with b̂y directed from Q to No and b̂z = n̂z

parallel to B’s axis of rotation in N .

Quantity Identifier Type Value
Earth’s gravitational constant g Constant 9.8 m/s2

Mass of Q m Constant 2 kg
Length of B L Constant 1.0 m
Angle from n̂y to b̂y with +n̂z sense θ Variable 60◦ (initial)

Tension in cable T Variable

θ bxby

bz

nx

ny
nz

N

B

Q

No

L

27.3 Physics: Equations of motion of the classic particle pendulum

There are many methods for formulating equations of motion, each requiring kinematic and kinetic analysis,
e.g., orientation, angular velocity, angular acceleration, position, velocity, acceleration, and force.

• Rotation matrix: bRn relates b̂x, b̂y, b̂z to n̂x, n̂y, n̂z and is found by first drawing the unit
vectors in a suggestive way as shown below and using the definitions of sin(θ) and cos(θ).
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bx

by

nx

ny

nz = bz

θ

θ
bRn n̂x n̂y n̂z

b̂x cos(θ) sin(θ) 0

b̂y -sin(θ) cos(θ) 0

b̂z 0 0 1

(1)

• Angular velocity and angular acceleration:
Since b̂z is fixed in both B and N , B has a simple angular velocity in N .
N�ωωωωωωωωωωωωωB is calculated using the right-hand rule and viewing how θ increases.

By definition N�αααααααααααααB �
Nd N�ωωωωωωωωωωωωωB

dt
, hence B’s angular acceleration in N is:

N�ωωωωωωωωωωωωωB = θ̇ b̂z (2)

N�αααααααααααααB =
(2)

θ̈ b̂z (3)

• Position, velocity and acceleration:
By inspection, Q’s position vector from No is �rQ/No = -L b̂y (4)

Q’s velocity in N is defined as the time-derivative in N of �rQ/No .
Q’s acceleration in N is defined as the time-derivative in N of N�vQ.

N�vQ �
Nd�rQ/No

dt
=
(4)

N
d (-L b̂y)

dt
=

B
d (-L b̂y)

dt
+ N�ωωωωωωωωωωωωωB × (-L b̂y) = θ̇ L b̂x (5)

N�aQ �
Nd N�vP

dt =
(5)

N
d (θ̇ L b̂x)

dt
=

Bd (θ̇ L b̂x)
dt + N�ωωωωωωωωωωωωωB × (θ̇ L b̂x) = θ̈ L b̂x + θ̇2 L b̂y (6)

• Forces:

θ

Q

No

T

mg

The resultant of all forces (tension and gravity) on particle Q isa

�F
Q

= T b̂y − m g n̂y (7)

aA massless, rigid, inextensible cable can only exert a tensile force on Q in the �by direc-

tion. The cable’s inability to exert force on Q in the �bx direction is a consequence of the
Newton/Euler laws and a free-body analysis of the cable.

27.3.1 �F = m�a for the classic particle pendulum

Substituting equations (6) and (7) into Newton’s
law gives the vector equation of motion:

�F
Q

= m N�aQ

T b̂y − m g n̂y
(7)

= m (L θ̈ b̂x + L θ̇2 b̂y)
(6)

Scalar equations are generated from a vector equation by dot-multiplication with a vector. There are a
variety of choices of vectors to use for this dot-multiplication and some are better than others. Although
n̂x and n̂y may seem obvious, the more efficient choice is b̂x and b̂y.

Dot-multiplication of �F = m�a with n̂x and n̂y.
Dot-multiplication of �F = m�a with n̂x and n̂y, produces a set of linear algebraic equations that are
coupled in θ̈ and T . Using standard linear algebra techniques, it is a straight-forward (albeit tedious)

process to solve for T and θ̈ (shown below-right). In general, free-body analyses result in equations that
are coupled in force scalars (e.g., T ) and acceleration scalars (e.g., θ̈).

-T sin(θ) =
(1)

m [L θ̈ cos(θ) − L θ̇2 sin(θ)]

T cos(θ) − m g =
(1)

m [L θ̈ sin(θ) + L θ̇2 cos(θ)]
⇒ θ̈ =

-g
L

sin(θ)

T = m g cos(θ) + m Lθ̇2

Dot-multiplication of �F = m�a with b̂x and b̂y – a simpler set of equations.
Dot-multiplication of �F = m�a with b̂x and b̂y produces simpler algebraic equations that are uncoupled
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in θ̈ and T . The main point is that the choice of vectors used for dot-multiplication affects complexity and
coupling of the resulting scalar equations, and this choice can be used to the analyst’s benefit.

For b̂x: -m g sin θ =
(1)

m L θ̈ For b̂y: T − m g cos(θ) =
(1)

m L θ̇2

27.3.2 Angular momentum principle for the classic particle pendulum

Another way to formulate equations of motion is with the angular momentum principle, which is
facilitated by the analyst choosing a convenient “about-point”. For the pendulum, point No is a convenient
about-point (as designated by the MG road-map for θ).

θ

Q

No

L

T

mg

The moment of all forces on Q about No is calculated with the cross product of
�rQ/No (Q’s position vector from No) with �F

Q
(the resultant of all forces on Q), as

�M
Q/No = �rQ/No × �F

Q
=

(4 7)
-L b̂y × (

T b̂y − m g n̂y

)
=
(1)

-m g L sin(θ) b̂z

θ

Q

No

L

mLθ

Q’s angular momentum about No in N is the cross product of Q’s position vector
from No with m N�vQ (Q’s translational momentum in N), i.e.,

N�H
Q/No � �rQ/No × m N�vQ =

(4 5)
-L b̂y ×m L θ̇ b̂x = m L2 θ̇ b̂z

Assembling the ingredients in the angular momentum principle, one finds

�M
Q/No =

Nd
N�H

Q/No

dt ⇒ -m g L sin(θ) b̂z = m L2 θ̈ b̂z

Dot-multiplication of both sides of the previous vector equation with b̂z, dividing both sides by mL, and
subsequent rearrangement gives the classic pendulum equation θ̈ + g

L sin(θ) = 0.

27.3.3 Euler’s rigid body equation for the classic particle pendulum

Since B is a rigid body whose motion in a Newtonian reference frame N is restricted
to the plane perpendicular to n̂z, its equations of motion can be formed with Euler’s
equation for a rigid body with a simple angular velocity as

�M
B/No

z =
(2D)

I N�αααααααααααααB ⇒ -m g L sin(θ) b̂z = m L2 θ̈ b̂z

θ

nz

N

B

No

L

• �M
B/No

z = -mg L sin(θ) b̂z is the b̂z component of the moment of all forces on B about No, (see Section 27.3.2).

• I is B’s mass moment of inertia about the line passing through No and parallel to b̂z.
Since B’s mass is solely particle Q, I = m L2 (Q’s mass multiplied by the square of Q’s distance from No).

• N�ααααααααααααα
B is B’s angular acceleration in N , calculated in equation (3) as N�ααααααααααααα

B = θ̈ b̂z.

Dot-multiplication of both sides of the vector equation with b̂z, dividing by mL, and subsequent rearrange-
ment gives the classic pendulum equation θ̈ + g

L sin(θ) = 0.

27.3.4 Kinetic energy for the classic particle pendulum

Kinetic energy is useful for:
• The power/energy-rate principle described in Chapter 9 (see example in Section 27.3.5)

• Conservation of mechanical energy (see example in Section 27.3.6).
• Lagrange’s equations of motion .

NKQ � 1
2

m N�vQ ············· N�vQ =
1
2

m (L θ̇ b̂x) ············· (L θ̇ b̂x) =
1
2

m L2 θ̇2

Copyright c© 1992-2016 Paul Mitiguy. All rights reserved. 290 Chapter 27: MIPSI: Classic particle pendulum



27.3.5 Power/energy-rate principle for the classic particle pendulum

The following figure shows the forces and velocity for particle Q. Since this particle-pendulum has one-
degree of freedom in N , the power/energy-rate principle described in Chapter 9 is useful for forming
its equations of motion.3

The power of all forces on Q in N is defined as

NPQ � �F
Q ············· N�vQ = (T b̂y − m g n̂y) ············· (L θ̇ b̂x) = -m g L sin(θ) θ̇

Since tension T does not appear in the power of Q, it is called a workless force or
non-contributing force. The fortuitous absence of tension (an unknown) is one of
the major advantages of the power/energy-rate principle.

Q’s kinetic energy in N was calculated (previous section) as NKQ = 1
2 m L2 θ̇2.

θ

bx
by

nx

nyN

Q

No

Lθ
T

mg

Equating power to the time-derivative of kinetic energy (i.e., using the power/energy-rate principle) gives4

NPQ = d NKQ

dt
⇒ -m g L sin(θ) θ̇ = m L2 θ̇ θ̈

Rearranging and factoring out θ̇, noting that in general θ̇ �= 0, and dividing by m L2, gives[
m L2 θ̈ + m g L sin(θ)

]
θ̇ = 0 ⇒ m L2 θ̈ + m g L sin(θ) = 0 ⇒ θ̈ +

g

L
sin(θ) = 0

This power/energy-rate equation is useful for several reasons:
• It forms an equation of motion for systems with one-degree of freedom.

• It tells us that gravity g affects the Q’s motion in N , but tension T does not.

27.3.6 Conservation of mechanical energy for the classic particle pendulum

Conservation of mechanical energy is the time-integral of the
power/energy-rate principle and relates the system’s kinetic and potential
energies to an arbitrary constant (e.g., Constant = 0) as

K + U = Constant ⇒ 1
2

m L2 θ̇2 + -m g L cos(θ) = 0

The time-derivative of conservation of mechanical energy produces one
time-dependent equation of motion (namely the power/energy-rate principle) as

θ

N

Q

L

Lθ

mg

m L2 θ̇ θ̈ + m g L sin(θ) θ̇ = 0

Rearranging and factoring out θ̇, noting that in general θ̇ �= 0, and dividing by m L2, gives

[m L2 θ̈ + m g L sin(θ)] θ̇ = 0 ⇒ m L2 θ̈ + m g L sin(θ) = 0 ⇒ θ̈ +
g

L
sin(θ) = 0

27.4 Solution of the classic particle pendulum ODE

The ODE (ordinary differential equation) that governs the motion of the clas-
sic pendulum is nonlinear, homogeneous, constant-coefficient, and 2nd-order.
There are a variety of methods to solve this ODE for θ(t), including:
• Numerical integration with a computer program
• Analytical solution with Jacobian elliptic functions
• Analytical solution using the small angle approximation sin(θ) ≈ θ

θ

L

θ̈ + g
L sin(θ) = 0

3The pendulum has one degree of freedom because its motion is described by one velocity variable, namely θ̇.
4Multiplying the power/energy-rate equation by the differential dt and integrating the left-hand side with respect to dθ

and the right-hand side with respect to dθ̇ leads to conservation of mechanical energy m g L cos(θ) = 1
2

m L2 θ̇2.
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27.4.1 Numerical solution of pendulum ODE via MotionGenesis and/or MATLABR©

There are few mechanical systems whose motions have analytical solutions. Alternately, there are many
mechanical systems whose motions can be predicted with numerical integration, (e.g., a variable-step Runga-

Kutta integrator). For example, the following MotionGenesis commands numerically solve the differential
equation for θ(t) for 0 ≤ t ≤ 6 secs with g = 9.8 m

s2 , L = 1.0 m, θ(t=0) = 60◦.
Note: Output for plotting is created every 0.02 sec by assigning a numerical integration step (tStep = 0.02 sec).
To make MotionGenesis create a .m file for subsequent use with MATLABR©, change the last line to pendulum.m.
Constant g = 9.8 m/s^2; L = 1 m % Declare g (gravity) and L (length).

Variable theta’’ = -g/L*sin(theta) % Governing ode (ordinary differential equation).

Input theta = 60 deg, theta’ = 0 deg/sec % Initial values for theta and theta’.

Input tFinal = 6 sec, tStep = 0.02 sec % Solve ODE from t=0 to 6 sec. Output every 0.02 sec.

OutputPlot t sec, theta deg % Have ODE output and plot theta vs. t.

ODE() pendulum % Numerically integrate the ode.

27.4.2 Analytical (closed-form) solution of the classic particle pendulum ODE

The simple particle pendulum is one of the few mechanical systems whose motion are governed by a
nonlinear ODE which have a known analytical (closed-form) solution. The exact analytical solution for
its ODE is a Jacobian elliptic function, with an pendulum oscillation period τperiod that depends on
K(k), the elliptic integral of the first kind with modulus k = sin(θ0

2 ) [θ0 is initial value of θ].5

τperiod =
(exact)

4K(k)
√

L
g τperiod ≈ 2π

ω
where ω =

√
g

L

(
1 − k2

)[0.25 cos(
θ0
2

)0.125 ]

27.4.3 Simplification and analytical solution of the classic particle pendulum ODE

One way to approximate the pendulum’s nonlinear ODE is with the small angle
approximation sin(θ) ≈ θ, which makes the ODE linear and allows the solution

to be written in terms of ωn �
√

g
L and the initial values θ0 and θ̇0.

θ̈ +
g

L
θ ≈ 0 ⇒ θ(t) ≈ θ̇0

ωn
sin(ωn t) + θ0 cos(ωn t)

θ

L

The period of oscillations of the approximate analytical solution is τperiod ≈ 2π ωn = 2π
√

L
g . τperiod

can also be experimentally determined with a real pendulum and is surprisingly well-correlated to this
analytically simple model and small-angle approximation for τperiod.6

In addition to correlating the period, it is helpful to compare the mo-
tion predicted by the linear differential equation with that predicted
by the exact solution of the nonlinear differential equation as is done
in the figure to the right. For small initial angles, e.g., θ0 = 20◦, the
linear and nonlinear differential equations predict similar motions.
For larger initial angles of θ, e.g., θ0 = 60◦, the motion differ more,
but is still surprisingly similar even though θ is large (

∣∣θ∣∣ > 1 rad).
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27.5 Interpretation of results for the classic particle pendulum

The investigation of the classic particle pendulum leads to several conclusions:7

5The approximation in [8] for τperiod is accurate to 1% for angles up to 177◦ and computable with a simple calculator.
6The experimental determination of a pendulum’s period requires a string, a tape measure, and a stop watch. It is easy to

time the period of a one meter long pendulum and compare it with the analytical period of τperiod = 2 π
�

1/9.8 = 2.007 sec.
7Other interesting results for this simple pendulum were reported in [28] by Vassar College Physicist Cindy Schwarz.
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• There are many ways to form equations of motion for a simple pendulum.
• The motion of the pendulum does not depend on the mass of the object.
• For small angles, the period of oscillation does not depend on the initial value of θ.
• For large initial angles, the motion predicted by the differential equation employing the small angle

approximation differs from the motion predicted by the full nonlinear differential equation. The
differences are surprisingly small even when θ0 is relatively large, e.g., θ0 > 1 rad.
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