Chapter 25

Undamped coupled 2^{nd} -order ODEs

Summary (see examples in Hw 13)

Many physical phenomena are governed by a set of nundamped, coupled, linear, constant-coefficient, homogeneous ODEs. These include free vibrations of buildings, airplanes, automobiles, space structures, and molecules.

25.1 Physical insights into eigenvalues and eigenvectors of a slinky

Two long thin rulers (A and B) connected to a slinky (spring) are useful for demonstrating the physical significance of eigenvalues and eigenvectors.

Mode #	Eigenvalue (frequency)	Eigenvector (use + or 0 or $-$)	Potential Energy $(\frac{1}{2} k \delta^2)$	Kinetic Energy $(\frac{1}{2} m v^2)$	Total Energy Kinetic + Potential
1	small /large	$\begin{bmatrix} + \\ + \end{bmatrix}$ or $\begin{bmatrix} - \\ - \end{bmatrix}$	small/large one/two deformed spring min/max deformation	small/large	small/large
2	$\operatorname{small}/\operatorname{large}$	$\begin{bmatrix} + \\ - \end{bmatrix}$ or $\begin{bmatrix} - \\ + \end{bmatrix}$	small/large one/two deformed springs min/max deformation	$\operatorname{small}/\operatorname{large}$	$\operatorname{small}/\operatorname{large}$

25.2 Analytical solutions of undamped, coupled, ODEs

X	$n \times 1$ matrix of dependent variables	
M, B, K	$n \times n$ matrices of constants	
G	$n \times p$ matrix of constants	
F	$p \times 1$ matrix of known functions of time	
	$f_1(t), f_2(t), \ldots, f_n(t),$	

An undamped set of n coupled, linear, constant-coefficient, 2^{nd} -order ODEs can be written in the matrix form

$$\underset{(n\times n)}{\overset{M}{X}} + \underset{(n\times n)}{\overset{B}{X}} + \underset{(n\times n)}{\overset{K}{X}} = \underset{(n\times p)}{\overset{G}{F}}$$
(1)

To solve equation (1), write $X(t) = X_h(t) + X_p(t)$ (the sum of a homogeneous and particular solution). The homogeneous solution $X_h(t)$ can be found by assuming a solution of the form shown in equation (2), where p is a yet-to-be-determined constant and U is a yet-to-be-determined <u>non-zero</u> $n \times 1$ matrix of constants.^{*a*}

$$X_{h}(t) = \underbrace{U e^{pt}}_{U} (2)$$
$$U \triangleq \begin{bmatrix} u_{1} \\ u_{2} \\ \cdots \\ u_{n} \end{bmatrix}$$

^aIt is reasonable to guess $X_h(t) = Ue^{pt}$ because it worked for **uncoupled** linear ODEs. The matrix U is **non-zero** because U = [0] produces the **trivial solution** $X_h(t) = [0]$, which is not a solution of interest (not what we are looking for).

Substituting/differentiating equation (2) into the homogeneous part of equation (1) (F = [0]), gives

	Note: This proof mimics Section 25.1. Answers are at \underline{w}	<u>ww.MotionGenesis.com</u> \Rightarrow <u>lextbooks</u> \Rightarrow <u>Resources</u> .
M	$\begin{bmatrix} p^2 U e^{pt} \end{bmatrix} + B \begin{bmatrix} p U e^{pt} \end{bmatrix} + K \begin{bmatrix} U e^{pt} \end{bmatrix} = (1,2)$	[0] Factor on Ue^{pt}
	$\left[p^2 M + p B + K \right] U e^{pt} = \left[0 \right]$	0] Section 7.1 shows $e^{pt} \neq 0$
	$\left[\begin{array}{ccc} p^2 M \; + \; p B^{*^0} \!$	0] Sometimes $B \approx [0]$ (see undamped below)
	$\left[\begin{array}{cc} p^2 M + K \end{array} \right] U = \left[0 \right]$	0] Define: $\lambda \triangleq -p^2$ $p = \pm \sqrt{-\lambda}$
ſ	Generalized eigen-equation $\begin{bmatrix} -\lambda M + K \end{bmatrix}$	$]U = [0] \implies \det\left[-\lambda M + K\right] = 0 (3)$

This eigen-equation is a <u>coupled</u> nonlinear algebraic equation. It has **n** equations and **n + 1** unknowns in λ and U. The related det $[-\lambda M + K] = 0$ is **1** <u>uncoupled</u> nonlinear algebraic equation with **1** unknown λ . Equation (1) \Rightarrow (3) changes **n** coupled ODEs with **n** unknowns into a *eigen-equation*.

Undamped: It can be reasonable to set B = [0] if:

- Damping is small.
- It is difficult to analytically or experimentally determine the elements of the damping matrix.
- In structural vibrations, damping is approximated with *modal damping*.

For eigen-equation (3) to produce a **non-zero** U (and **non-zero** X_h), the inverse of $[-\lambda M + K]$ must not exist. To see this, suppose $[-\lambda M + K]^{-1}$ does exist and multiply both sides of the eigen-equation by $[-\lambda M + K]^{-1}$, which produces U = [0]. For $U \neq [0]$, one must find **special** values of λ so $[-\lambda M + K]^{-1}$ does not exist. These **special** values $\lambda_1, \lambda_2, \ldots, \lambda_n$ are called **eigenvalues**. For each λ_i , there is a corresponding **special** non-zero U_i called the **eigenvector** corresponding to λ_i . Note: The eigenvalue problem is a **special** nonlinear algebraic equation because the number of solutions is known apriori.

The following are equivalent statements about equation (4) and finding the *eigenvalues* λ :

- Find the values of λ which result in $U \neq [0]$.
- Find the values of λ so the matrix $[-\lambda M + K]$ is singular, i.e., $[-\lambda M + K]^{-1}$ does not exist.
- Find the values of λ so the determinant of $[-\lambda M + K]$ is zero, i.e.,

Computational notes: For small sets of coupled equations $(n \leq 3)$, setting the determinate to zero is an effective way to determine λ - and this method works when M or K have symbolic (non-numeric) elements. When n is large, numerical eigenvalue algorithms are used to determine λ . Robust eigenvalue and eigenvector algorithms are relatively new (circa 1960) and are available in computer programs such as MATLAB[®] and MotionGenesis. If both M and K are symmetric and positive definite, the eigenvalues λ_i (i=1,...n) are real positive numbers and eigenvectors U_i (i=1,...n) are real (not complex), and there are special efficient algorithms for calculating λ_i and U_i (especially important when n is large).

 $\det\left[-\lambda M + K\right] = 0$