Chapter 22

$AU = \lambda U$ $AU = \lambda BU$

Eigenvalues and eigenvectors

What is a matrix eigenvalue problem? (see examples in Hw 12)

An *eigenvalue* is a "special value" of λ that allows equation (1) to produce <u>non-zero</u> U.¹

- λ is an unknown <u>scalar</u> (called an eigenvalue).
- $U \neq [0]$ is a unknown $n \times 1$ column matrix (called an *eigenvector*).

 $Matrix(\lambda) * U = [0]$ (1)

• Matrix(λ) is an $n \times n$ matrix that depends on λ .

[0] is the $n \times 1$ zero matrix

Eigenvalue problem	Equation form	Alternate form	Solution for λ
Standard eigenvalue	$[-\lambda I + A] U = [0]$	$AU = \lambda U$	$\det\left[-\lambdaI+A\right] =0$
Generalized eigenvalue	$[-\lambda B + A] U = [0]$	$AU = \lambda BU$	$\det\left[-\lambdaB+A\right] =0$
Quadratic eigenvalue	$[M \lambda^2 + B \lambda + K] U = [0]$	Not applicable	$\det\left[M\lambda^2+B\lambda+K\right]=0$
Nonlinear eigenvalue	$Matrix(\lambda) * U = [0]$	Not applicable	$\det\left[\operatorname{Matrix}(\lambda)\right] = 0$

22.1 Recognize and remember: Solving an eigenvalue problem

There are similarities between the familiar *quadratic equation* and an *eigenvalue problem*. Both are algebraic equations that are <u>nonlinear</u> in their unknowns, and both have known solutions. It is important to <u>recognize</u> these equations and <u>remember</u> their solutions.

	Quadratic equation	Standard eigenvalue	Generalized eigenvalue
Equation form	$ax^2 + bx + c = 0$	$[-\lambda I + A]U = [0]$	$[-\lambda B + A]U = [0]$
Alternate form	$a x^2 + b x = -c$	$AU = \lambda U$	$AU = \lambda BU$
Unknowns Equation type	x Nonlinear	$\lambda, \ U$ Nonlinear	$\lambda,\;U$ Nonlinear
Solution	$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{}$	$\det\left[-\lambda I + A\right] = 0$	$\det\left[-\lambda B + A\right] = 0$

22.2 Motivating questions for eigenvalues and eigenvectors (Hw 12.9)

Question 1: Solve the following equation for the two unknowns λ and U (with the condition $U \neq 0$). Since this equation has the special form $Matrix(\lambda) U = 0$, it is **recognized** as an **eigenvalue problem**.

$$[-\lambda + 3] * U = 0$$
 (or alternately $3U = \lambda U$)

The solution to this equation is a "special value" of λ and an associated <u>non-zero</u> U.

Eigenvalue:
$$\lambda = 3$$

Eigenvector:
$$U =$$
any number

 $^{^{1}}U$ is a "right" eigenvector for $Matrix(\lambda) * U = [0]$, whereas U is a "left" eigenvector for $U * Matrix(\lambda) = [0]$.

Question 2: Find a **non-zero** solution y(t) to the ODE shown below-right.

Start by substituting the assumed solution $y(t) = U e^{pt}$ into the ODE where p is a constant (to-be-determined) and U is a **non-zero** constant.^a Subsequently, rearrange and simplify using $e^{pt} \neq 0$.

The equation for p is recognized as an eigenvalue problem.

The "special value" of p and associated <u>non-zero</u> U are

ODE:
$$\dot{y} - 3y = 0$$

Eigen-problem: $(p-3) U = 0$
Solution: $y(t) = U e^{3t}$

Eigenvalue: $p = \boxed{3}$

Eigenvector: U =any constant

^a Note: U = 0 produces the trivial (degenerate) solution y(t) = 0, which is <u>not</u> what we are looking for. Hence $U \neq 0$.

^b Note: In ODEs, this "special value" of p is called a pole whereas in matrix algebra p is called an eigenvalue.

Question 3: Eigenvalue and eigenvector concepts. (Answers: www.MotionGenesis.com \Rightarrow Textbooks \Rightarrow Resources) Consider the following set of algebraic equations governing the unknowns u_1 , u_2 , and λ .

$$\begin{array}{cccc} \lambda \, u_1 \, + & u_2 \, = \, 0 \\ 4 \, u_1 \, + \, \lambda \, u_2 \, = \, 0 \end{array} \qquad \Longleftrightarrow \qquad \begin{bmatrix} \, \lambda & 1 \\ 4 & \lambda \, \end{bmatrix} \begin{bmatrix} u_1 \\ u_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

Find "special values" of λ (called *eigenvalues*) that allow for $\begin{bmatrix} u_1 \\ u_2 \end{bmatrix} \neq \begin{bmatrix} 0 \\ 0 \end{bmatrix}$.

Result:

$$\lambda_1 = 2$$

 $\lambda_2 = -2$

For each special value of λ determine a corresponding "special ratio" of u_2 to u_1 .

Result: (These "special ratios" are called *eigenvectors* and c_1 and c_2 are arbitrary constants.)

For
$$\lambda_1$$
: $U_1 \triangleq \begin{bmatrix} u_1 \\ u_2 \end{bmatrix} = c_1 \begin{bmatrix} 1 \\ -2 \end{bmatrix}$

For
$$\lambda_2$$
: $U_2 \triangleq \begin{bmatrix} u_1 \\ u_2 \end{bmatrix} = c_2 \begin{bmatrix} 1 \\ 2 \end{bmatrix}$

Question 4: Eigenvalues for an unusual (nonlinear) eigenvalue problem.

Consider the following set of algebraic equations governing the unknowns u_1 , u_2 , and λ .

Find an equation, which when solved produces "special values" of λ that allow for $\begin{bmatrix} u_1 \\ u_2 \end{bmatrix} \neq \begin{bmatrix} 0 \\ 0 \end{bmatrix}$.

Result: (These "special values" of λ are called *eigenvalues*.)

$$\begin{array}{|c|c|c|c|c|} \hline \lambda^3 & - & 5\cos(\lambda) & + & 4.5 & = & 0 \\ \hline \end{array}$$

Note: It is questionable whether this eigen-problem can be cast as a standard or generalized eigenvalue problem. Three eigenvalues that satisfy this equation are: $\lambda_1 = -1.7574$, $\lambda_2 = -0.5078$, $\lambda_3 = +0.4166$.

Question 5: Solve the following set of linear algebraic equations for x and y (for given values of d).

Answers at
$$\underline{\text{www.MotionGenesis.com}} \Rightarrow \underline{\text{Textbooks}} \Rightarrow \underline{\text{Resources.}}$$

Note: The **special value** d = -1 is the **only** value of d that produces a **non-zero** solution for x and y.

Note: One way to solve for this *special value* of d is by setting the determinant of the 2×2 matrix equal to 0,

Note: This is recognized as an eigenvalue problem **if** the question is: Find the special value of d that allows for $\begin{bmatrix} x \\ y \end{bmatrix} \neq \begin{bmatrix} 0 \\ 0 \end{bmatrix}$