Chapter 20

$AU = \lambda U$ $AU = \lambda BU$

Eigenvalues and eigenvectors

What is a matrix eigenvalue problem? (see examples in Hw 12)

An *eigenvalue* is a "special value" of λ that allows equation (1) to produce <u>non-zero</u> U.¹

- λ is an unknown <u>scalar</u> (called an *eigenvalue*)
- $U \neq [0]$ is a unknown $n \times 1$ column matrix (called an *eigenvector*)

 $Matrix(\lambda) * U = [0]$ (1)

[0] is the $n \times 1$ zero matrix.

•	$Matrix(\lambda)$	is an	$n \times n$	${\rm matrix}$	that	depends	on λ
---	-------------------	-------	--------------	----------------	------	---------	--------------

Eigenvalue problem	Equation form	Alternate form	Solution for λ
Standard eigenvalue	$[-\lambda I + A] U = [0]$	$AU = \lambda U$	$\det\left[-\lambdaI+A\right] =0$
Generalized eigenvalue	$[-\lambda B + A] U = [0]$	$AU = \lambda BU$	$\det\left[-\lambdaB+A\right] =0$
$Quadratic\ eigenvalue$	$[M \lambda^2 + B p + K] U = [0]$	Not applicable	$\det\left[M\lambda^2+Bp+K\right]=0$
Nonlinear eigenvalue	$Matrix(\lambda) * U = [0]$	Not applicable	$\det\left[\operatorname{Matrix}(\lambda)\right] = 0$

20.1 Recognize and remember: Solving an eigenvalue problem

There are similarities between the familiar *quadratic equation* and an *eigenvalue problem*. Both are algebraic equations that are <u>nonlinear</u> in their unknowns, and both have known solutions. It is important to <u>recognize</u> these equations and <u>remember</u> their solutions.

	Quadratic equation	Standard eigenvalue	Generalized eigenvalue
Equation form Alternate form	$ax^2 + bx + c = 0$ $ax^2 + bx = -c$	$(-\lambda I + A)U = [0]$ $AU = \lambda U$	$(-\lambda B + A)U = [0]$ $AU = \lambda BU$
	$ax^2 + bx = -c$,	
Unknowns Equation type	x Nonlinear	$egin{array}{c} \lambda, \ U \ \mathbf{Nonlinear} \end{array}$	$\lambda,\ U$ Nonlinear
Solution	$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$	$\det(-\lambda I + A) = 0$	$\det\left(-\lambda B + A\right) = 0$

20.2 Motivating questions for eigenvalues and eigenvectors

Question 1: Consider the following equation that has two unknowns, namely λ and U. Since this equation has the special form $AU = \lambda U$ (with A = 3), it is **recognized** as an **eigenvalue problem**.

$$(-\lambda + 3) * U = 0$$

The solution to this equation is a "special value" of λ and associated <u>non-zero</u> U,

Eigenvalue:
$$\lambda = 3$$

Eigenvector:
$$U =$$
any number

 $^{^{1}}U$ is a "right" eigenvector for Matrix(λ) * U = [0], whereas U is a "left" eigenvector for $U * \text{Matrix}(\lambda) = [0]$.

Question 2: Find a **non-zero** solution y(t) to the ODE shown below-right.

Start by substituting the assumed solution $y(t) = U e^{pt}$ into the ODE where p is a constant (to-be-determined) and U is a **non-zero** constant.^a Subsequently, rearrange and simplify using $e^{pt} \neq 0$.

The equation for p is recognized as an eigenvalue problem.

The "special value" of p and associated <u>non-zero</u> U are

ODE: $\dot{y} - 3y = 0$ Eigen-problem: (p-3)U = 0Solution: $y(t) = ce^{3t}$

Eigenvalue: p = 3

Eigenvector: U =any constant c

^a Note: U=0 produces the trivial (degenerate) solution y(t)=0, – which is <u>not</u> what we are looking for. Hence $U\neq 0$.

^b Note: In ODEs, this "special value" of p is called a pole whereas in matrix algebra, p is called an eigenvalue.

Question 3: Solve the following set of linear algebraic equations for x and y (for given values of d).

$$\begin{array}{ccc}
x & - & y & = & 0 \\
x & + & dy & = & 0
\end{array}
\qquad \Longleftrightarrow$$

$$\begin{bmatrix}
1 & -1 \\
1 & d
\end{bmatrix}
\begin{bmatrix}
x \\
y
\end{bmatrix} =
\begin{bmatrix}
0 \\
0
\end{bmatrix}$$

Answers at <u>www.MotionGenesis.com</u> \Rightarrow <u>Textbooks</u> \Rightarrow <u>Resources</u>.

d = 0	$x = \boxed{0}$	$y = \boxed{0}$
d = 1	$x = \square$	$y = \square$
d = 2	$x = \square$	$y = \square$
d = 3	$x = \boxed{0}$	$y = \boxed{0}$
d = -1	x =	y =

Note: The **special value** d = -1 is the <u>only</u> value of d that produces a **non-zero** solution for x and y. Note: One way to solve for this **special value** of d is by setting the determinant of the 2×2 matrix equal to 0.

Question 4: Eigenvalue and eigenvector concepts. (Answers: www.MotionGenesis.com \Rightarrow Textbooks \Rightarrow Resources) Consider the following set of algebraic equations governing the unknowns u_1 , u_2 , and λ .

$$\lambda u_1 + u_2 = 0$$

$$4 u_1 + \lambda u_2 = 0$$

or equivalently

$$\left[\begin{array}{cc} \lambda & 1\\ 4 & \lambda \end{array}\right] \left[\begin{array}{c} u_1\\ u_2 \end{array}\right] = \left[\begin{array}{c} 0\\ 0 \end{array}\right]$$

Find "special values" of λ (called *eigenvalues*) that allow for **non-zero** u_1 and u_2 .

Result:

$$\lambda_1 = 2$$

$$\lambda_2 =$$

For each special value of λ determine a corresponding "special ratio" of u_2 to u_1 .

Result: (These "special ratios" are called *eigenvectors* and c_1 and c_2 are arbitrary constants.)

For
$$\lambda_1$$
: $U_1 \triangleq \begin{bmatrix} u_1 \\ u_2 \end{bmatrix} = c_1 \begin{bmatrix} 1 \\ -2 \end{bmatrix}$

For
$$\lambda_2$$
: $U_2 \triangleq \begin{bmatrix} u_1 \\ u_2 \end{bmatrix} = c_2 \begin{bmatrix} 1 \\ \end{bmatrix}$

Question 5: Eigenvalues for a non-standard, non-generalized eigenvalue problem

Consider the following set of algebraic equations governing the unknowns $u_1, u_2, \text{ and } \lambda$.

$$\lambda^2 u_1 + 5 u_2 = 0$$
 whose matrix $(\cos(\lambda) - 0.9) u_1 + \lambda u_2 = 0$ form is:

Find an equation, which when solved produces "special values" of λ that allow for **non-zero** u_1 and u_2 .

Result: (These "special values" of λ are called *eigenvalues*.)

= 0

Note: It is questionable whether this eigen-problem can be cast as a standard or generalized eigenvalue problem. Three eigenvalues that satisfy this equation are: $\lambda_1 = -1.7574$, $\lambda_2 = -0.5078$, $\lambda_3 = +0.4166$.