# F = ma

# 20.5 MG road-maps for efficient statics and dynamics

A modern way to efficiently form static or dynamic equations with FBDs is to:<sup>1</sup>

- Choose *scalar variables* that describe the relevant *unknown* configuration, motion, or forces.
- Complete the associated *MG road-maps* and *free-body diagrams*.<sup>2</sup>
- Complete the calculations specified by the *MG road-map equation*.

| Variable                                                                                                                       | Translate/<br>Rotate | Direction<br>(unit vector) | $\stackrel{\mathrm{System}}{S}$ | $_{\rm of }^{\rm FBD}$ | About<br>point | MG road-map equation | Additional<br>Unknowns |  |
|--------------------------------------------------------------------------------------------------------------------------------|----------------------|----------------------------|---------------------------------|------------------------|----------------|----------------------|------------------------|--|
|                                                                                                                                |                      |                            |                                 | Draw                   |                |                      | ?                      |  |
| * If applicable: Additional <i>constraint equations</i> and their time-derivatives (e.g., closed linkages or <b>rolling</b> ). |                      |                            |                                 |                        |                |                      |                        |  |

#### **MG road-map** for efficient statics and dynamics.

| Column                               | Enter the following information                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |  |  |  |  |
|--------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|
| $\begin{array}{c}1\\2\\3\end{array}$ | <b>Unknown scalar variable</b> (e.g., a position, velocity, force, or torque variable).<br>Type of motion associated with the variable: <b>translate</b> or <b>rotate</b> .<br>Vector direction (e.g., <b>unit vector</b> $\hat{\mathbf{u}}$ ) associated with the direction of motion.                                                                                                                                                                                                                                                  |  |  |  |  |  |  |
| 4                                    | List of objects whose motion (e.g., velocity or angular velocity) is directly effected by the variable in column 1 ("freeze" any variable other than the variable in column 1 and decide what objects <b>must</b> move). This picks a <b>system</b> S that reduces/eliminates constraint forces.<br>Note: If the variable in column 1 is a force measure, treat it as a velocity measure and determine what objects move. If it is a torque measure, treat it as an angular velocity measure and determine what objects move.            |  |  |  |  |  |  |
| 5                                    | <u><b>Draw</b></u> a <i>free-body diagram</i> of system $S$ ( <u>draw</u> relevant contact/distance forces).<br>Note: See force/torque models for gravity, springs, dampers, air-resistance, etc., in Chapter 19.                                                                                                                                                                                                                                                                                                                        |  |  |  |  |  |  |
| 6                                    | If column 2 was <b>rotate</b> , choose a point $O$ (or line $L$ ) about which moments are to be taken.<br>Note: Choose point $O$ to eliminate moments of unknown forces (e.g., contact forces on $S$ ) – look at FBD.<br>Note: To facilitate calculations, you can slide the "about point" along the line $L$ parallel to $\hat{\mathbf{u}}$ .<br>This is because $\hat{\mathbf{u}} \cdot \vec{\mathbf{M}}^{S/O} = \hat{\mathbf{u}} \cdot \vec{\mathbf{M}}^{S/P}$ if both points $O$ and $P$ are on line $L$ (proved in Section 17.1.3). |  |  |  |  |  |  |
| 7a                                   | If column 2 was <u>translate</u> , use:<br>( <i>N</i> is a Newtonian reference frame) $\hat{\mathbf{u}} \cdot (\vec{\mathbf{F}}_{\text{Dynamics}}^{S} = m^{S} * \vec{\mathbf{a}}_{\text{Scm}}^{S})$ or $\hat{\mathbf{u}} \cdot \vec{\mathbf{F}}_{\text{Statics}}^{S} = 0$                                                                                                                                                                                                                                                                |  |  |  |  |  |  |
| 10                                   | To calculate $m^{S} * {}^{N}\vec{\mathbf{a}}^{S_{cm}}$ for a system S of objects A, B, C:<br>$m^{S} * {}^{N}\vec{\mathbf{a}}^{S_{cm}} = m^{A} * {}^{N}\vec{\mathbf{a}}^{A_{cm}} + m^{B} * {}^{N}\vec{\mathbf{a}}^{B_{cm}} + m^{C} * {}^{N}\vec{\mathbf{a}}^{C_{cm}}$                                                                                                                                                                                                                                                                     |  |  |  |  |  |  |
|                                      | If column 2 was <u>rotate</u> , use: $\hat{\mathbf{u}} \cdot (\vec{\mathbf{M}}_{(20.4)}^{S/O} = \frac{{}^{N}d {}^{N}\vec{\mathbf{H}}^{S/O}}{dt} + \dots)$ or $\hat{\mathbf{u}} \cdot \vec{\mathbf{M}}_{\mathbf{Statics}}^{S/O} = 0$                                                                                                                                                                                                                                                                                                      |  |  |  |  |  |  |
| 7b                                   | For a system S with a par-<br>ticle Q and rigid body B:<br>$\vec{H}^{S/O} = \vec{H}^{Q/O} + \vec{H}^{B/O}$ For rigid body B<br>$\vec{H}^{B/O} = \vec{H}^{Q/O} \times m^{Q} \vec{v}^{Q}$ For rigid body B<br>$\vec{H}^{B/O} = \vec{H}^{B/B_{p}} + \vec{r}^{B_{p}/O} \times m^{B} \vec{v}^{B_{cm}}$ where:<br>$\vec{H}^{B/B_{p}} = \vec{I} \cdot \vec{v}^{B/B_{p}} + \vec{r}^{B_{cm}/B_{p}} \times m^{B} \vec{v}^{B_{p}}$                                                                                                                  |  |  |  |  |  |  |
| 8*                                   | Additional constraint force/torque variables may appear in MG road-maps. If applicable, append configuration or motion <i>constraints</i> (e.g., closed linkages or <b>rolling</b> ) that interrelate Column 1 position/velocity variables.                                                                                                                                                                                                                                                                                              |  |  |  |  |  |  |

See MG road-map examples in next sections and at <u>www.MotionGenesis.com</u>  $\Rightarrow$  <u>Textbooks</u>  $\Rightarrow$  <u>Resources</u>.

<sup>&</sup>lt;sup>1</sup>Mitiguy and Fregly invented MG road-maps to efficiently form static and dynamic equations. MG road-maps combine the simplicity of a spreadsheet with the physical insights of free-body diagrams. MG road-maps were inspired by the cleverness of D'Alembert and the mathematical rigor of Kane and Euler/Lagrange. MG road-maps are easy to teach/learn and approximate the efficiency of Kane's method for most systems (except embedded constraints like rolling/gears).

<sup>&</sup>lt;sup>2</sup>*Free-body diagrams (FBDs)* are a means to an end, not an end in itself. *MG road-maps* help determine which FBDs to draw and what to do with them, – which differs significantly from knowing how to draw FBDs.

#### Copyright © 1992-2016 Paul Mitiguy. All rights reserved.

120

#### Chapter 20: Dynamics: Laws of motion

#### 20.5.1MG road-map: Projectile motion (2D)

A baseball (particle Q) flies over Earth N (a Newtonian reference frame). Aerodynamic forces on the baseball are modeled as  $-b \vec{\mathbf{v}}$  ( $\vec{\mathbf{v}}$  is Q's velocity in N).  $\widehat{\mathbf{n}}_{x}$  is horizontally-right,  $\widehat{\mathbf{n}}_{y}$  is vertically-upward, and  $N_{o}$  is home-plate (point fixed in N).

**MG road-map** for projectile motion x and y ( $\hat{\mathbf{n}}_x, \hat{\mathbf{n}}_y$  measures of Q's position vector from  $N_0$ )

| Variable | Translate/<br>Rotate | Direction<br>(unit vector) | System S | $_{\mathrm{of}\ S}^{\mathrm{FBD}}$ | About<br>point    | MG road-map equation                                            |
|----------|----------------------|----------------------------|----------|------------------------------------|-------------------|-----------------------------------------------------------------|
| x        |                      |                            |          | Draw                               | Not<br>applicable | $\cdot \left( = \right)$                                        |
| y        |                      |                            |          | Draw                               | Not<br>applicable | $\cdot \left( \begin{array}{c} = \\ (20.1) \end{array} \right)$ |

Solution and simulation link at <u>www.MotionGenesis.com</u>  $\Rightarrow$  <u>Textbooks</u>  $\Rightarrow$  <u>Resources</u>.

#### 20.5.2MG road-map: Rigid body pendulum (2D)

A non-uniform density rigid rod A is attached at point  $A_0$  of A by a frictionless revolute/pin joint to Earth N (Newtonian reference frame). The rod swings with a "pendulum angle"  $\theta$  in a vertical plane that is perpendicular to unit vector  $\hat{\mathbf{a}}_{z}$ .

| Variable | Translate/<br>Rotate | Direction<br>(unit vector) | System | $\begin{array}{c} \text{FBD} \\ \text{of } S \end{array}$ | About<br>point | MG road-map | equation |
|----------|----------------------|----------------------------|--------|-----------------------------------------------------------|----------------|-------------|----------|
| θ        |                      |                            |        | Draw                                                      |                | · (         | )        |

Solution and simulation link at <u>www.MotionGenesis.com</u>  $\Rightarrow$  <u>Textbooks</u>  $\Rightarrow$  <u>Resources</u>.

#### MG road-map: Inverted pendulum on cart (x and $\theta$ ) (2D) 20.5.3

A rigid rod B is pinned to a massive cart A (modeled as a particle) that translates horizontally in a Newtonian reference frame N. The cart's position vector from a point  $N_{\rm o}$  fixed in N is  $x \, \hat{\mathbf{n}}_{\rm x}$  ( $\hat{\mathbf{n}}_{\rm x}$  is horizontally-right). B's swinging motion in N is in a vertical plane perpendicular to  $\widehat{\mathbf{n}}_{\mathbf{z}}$  (a unit vector fixed in both B and N).

| Variable | Translate/<br>Rotate | Direction<br>(unit vector) | System S | $\begin{array}{c} \text{FBD} \\ \text{of } S \end{array}$ | About<br>point    | MG road-map equation                                              | Hom   |
|----------|----------------------|----------------------------|----------|-----------------------------------------------------------|-------------------|-------------------------------------------------------------------|-------|
| x        |                      |                            |          | Draw                                                      | Not<br>applicable | $\bullet \left( \begin{array}{c} = \\ (20.1) \end{array} \right)$ | com   |
| θ        |                      |                            |          | Draw                                                      |                   |                                                                   | calcı |

Note:  $m^S * {}^N \vec{\mathbf{a}}^{S_{cm}} = m^A * {}^N \vec{\mathbf{a}}^A + m^B * {}^N \vec{\mathbf{a}}^{B_{cm}}$  and  $\frac{{}^N d^N \vec{\mathrm{H}}^{B/A}}{dt} + \dots = {}_{(20.6)} \mathbf{I}_{zz}^{B/A} * {}^N \vec{\mathbf{a}}^B + m^B * \vec{\mathbf{r}}^{B_{cm}/A} \times {}^N \vec{\mathbf{a}}^A.$ 

ework 15.8 Chapter 24 lete these lations.





 $\stackrel{\circ}{=}_{(15.3)} \mathbf{I}_{zz}^{A/A_{o}}$ 

 $A_{o}$ 



# 20.5.4 MG road-map: Rotating rigid body (3D)

Shown right is a rotating rigid body B (e.g., tennis racquet, spacecraft, or aircraft) in a Newtonian reference frame N. Right-handed orthogonal unit vectors  $\hat{\mathbf{b}}_{\mathbf{x}}$ ,  $\hat{\mathbf{b}}_{\mathbf{y}}$ ,  $\hat{\mathbf{b}}_{\mathbf{z}}$  are fixed in B.



Note: The "about point" is somewhat arbitrary. When  $B_{\rm cm}$  is chosen:  $\stackrel{N}{\operatorname{H}} \stackrel{\mathcal{H}B_{\rm cm}}{\underset{(15.2)}{\overset{\mathbb{H}}{\operatorname{I}}}} = \stackrel{\mathcal{H}B_{\rm cm}}{\overset{\mathbb{H}}{\operatorname{I}}} \cdot \stackrel{N}{\omega} \stackrel{\mathcal{H}B_{\rm cm}}{\overset{\mathbb{H}B_{\rm cm}}{\operatorname{I}}} \cdot \stackrel{N}{\varepsilon} \stackrel{\mathcal{H}B_{\rm cm}}{\overset{\mathbb{H}B_{\rm cm}}{\operatorname{I}}} \cdot \stackrel{N}{\varepsilon} \stackrel{\mathcal{H}B_{\rm cm}}{\overset{\mathbb{H}B_{\rm cm}}{\operatorname{I}}} \cdot \stackrel{N}{\varepsilon} \stackrel{\mathcal{H}B_{\rm cm}}{\varepsilon} \cdot \stackrel{\mathcal{H}B_{\rm cm}}{\operatorname{I}}$ 

# 20.5.5 MG road-map: Bridge crane equations of motion (2D)

A payload (particle) Q is welded to the end of a light rigid cable B which swings in a Newtonian reference frame N. Cable B is pinned to a massive trolley A. Trolley A moves horizontally along a smooth slot fixed in N with a **specified** (known) displacement x(t) due to a force of measure  $F_x$  (a linear actuator connects A to a point  $N_0$  of N).



*MG* road-map for pendulum angle  $\theta$ , actuator force  $F_x$ , and cable tension

| Variable | Translate/<br>Rotate | Direction<br>(unit vector) | $\stackrel{ m System}{S}$ | $\begin{array}{c} \text{FBD} \\ \text{of } S \end{array}$ | About<br>point    | $MG\ road\ map\ equation$ |
|----------|----------------------|----------------------------|---------------------------|-----------------------------------------------------------|-------------------|---------------------------|
| θ        |                      |                            |                           | Draw                                                      |                   |                           |
| $F_x$    |                      |                            |                           | Draw                                                      | Not<br>applicable |                           |
| Tension  |                      |                            |                           | Draw                                                      | Not<br>applicable |                           |

Student/Instructor version at <u>www.MotionGenesis.com</u>  $\Rightarrow$  <u>Textbooks</u>  $\Rightarrow$  <u>Resources</u> Note: Only the  $\theta$  road-map equation is needed to predict this system's motion. The others are shown for illustrative purposes.

# 20.5.6 MG road-map: Particle on spinning slot (2D)

A particle Q slides on a straight slot B. The slot is connected with a revolute joint to a Newtonian frame N at point  $B_0$  so that B rotates in a horizontal plane perpendicular to  $\hat{\mathbf{b}}_z$  ( $\hat{\mathbf{b}}_z$  is vertically-upward and fixed in both B and N). Note: Homework 14.7 completes the MG road-map calculations for x and  $\theta$ .



*MG* road-map for  $x, \theta$ , and  $F_N$  ( $\hat{\mathbf{b}}_v$  measure of normal force on Q from B)

| Variable | Translate/<br>Rotate | Direction<br>(unit vector) | System | $ \begin{array}{c} \text{FBD} \\ \text{of } S \end{array} $ | About<br>point    | $MG\ road\mathchar`{map}\ \epsilon$ | equation |  |  |
|----------|----------------------|----------------------------|--------|-------------------------------------------------------------|-------------------|-------------------------------------|----------|--|--|
| x        |                      |                            |        | Draw                                                        | Not<br>applicable | • ( =                               | )        |  |  |
| θ        |                      |                            |        | Draw                                                        | $B_{ m o}$        | • (                                 | )        |  |  |
| $F_N$    |                      |                            |        | Draw                                                        | Not<br>applicable | • (                                 | )        |  |  |

Note: The  $F_N$  road-map equation is needed to predict motion if a friction force depends on  $\mu F_N$ .

$${}^{N}\vec{\mathrm{H}}^{S/B_{\mathrm{o}}} = {}^{N}\vec{\mathrm{H}}^{B/B_{\mathrm{o}}} + {}^{N}\vec{\mathrm{H}}^{Q/B_{\mathrm{o}}} \text{ where } {}^{N}\vec{\mathrm{H}}^{B/B_{\mathrm{o}}} = {}_{(15.3)}I_{zz} {}^{N}\vec{\boldsymbol{\omega}}^{B} \text{ and } {}^{N}\vec{\mathrm{H}}^{Q/B_{\mathrm{o}}} = {}_{(10.3)}\vec{\mathrm{r}}^{Q/B_{\mathrm{o}}} \times m^{Q} {}^{N}\vec{\mathrm{v}}^{Q}.$$

#### 20.5.7 MG road-map: Chaotic motion of a double pendulum (3D)

The schematic to the right shows a swinging babyboot attached by a shoelace to a rigid support. The mechanical model of the babyboot consists of a thin uniform rod A attached to a fixed support N by a revolute joint at point  $N_{\rm o}$  and a uniform plate B connected to A with a second revolute joint at point  $B_{\rm o}$  so B can rotate freely about A's axis. Note: The revolute joints' axes are *perpendicular*, not parallel.

#### Modeling considerations

- The plate, rod, and support are rigid.
- The revolute joints are ideal (massless, frictionless, no slop/flexibility).
- Earth is a Newtonian reference frame.
- Forces due to Earth's gravitation are uniform and constant.
- Other distance forces (electromagnetic and gravitational) and air-resistance are negligible.

Right-handed sets of unit vectors  $\hat{\mathbf{n}}_x$ ,  $\hat{\mathbf{n}}_y$ ,  $\hat{\mathbf{n}}_z$ ;  $\hat{\mathbf{a}}_x$ ,  $\hat{\mathbf{a}}_y$ ,  $\hat{\mathbf{a}}_z$ ;  $\hat{\mathbf{b}}_x$ ,  $\hat{\mathbf{b}}_y$ ,  $\hat{\mathbf{b}}_z$  are fixed in N, A, B, respectively, with  $\hat{\mathbf{n}}_x = \hat{\mathbf{a}}_x$  parallel to the revolute axis joining A to N,  $\hat{\mathbf{n}}_z$  vertically-upward,  $\hat{\mathbf{a}}_z = \hat{\mathbf{b}}_z$  parallel to the revolute axis joining B to A), and  $\hat{\mathbf{b}}_z$  perpendicular to plate B.

Complete the *MG* road-map for angles  $q_A$  (angle from  $\hat{\mathbf{n}}_z$  to  $\hat{\mathbf{a}}_z$  with  $\hat{\mathbf{n}}_x$  sense) and  $q_B$  (angle from  $\hat{\mathbf{a}}_y$  to  $\hat{\mathbf{b}}_y$  with  $\hat{\mathbf{a}}_z$  sense). Note: The "about point" can be shifted from  $B_0$  to  $B_{cm}$  since  $\hat{\mathbf{b}}_z \cdot \vec{\mathbf{M}}_{(17.4)}^{B/B_{cm}} = \hat{\mathbf{b}}_z \cdot \vec{\mathbf{M}}_{(17.4)}^{B/B_0}$ .

| Variable | Translate/<br>Rotate | Direction<br>(unit vector) | System $S$              | $\begin{array}{c} \text{FBD} \\ \text{of } S \end{array}$ | About<br>point | MG road-map equation |
|----------|----------------------|----------------------------|-------------------------|-----------------------------------------------------------|----------------|----------------------|
| $q_A$    |                      |                            |                         | Draw                                                      |                |                      |
| $q_B$    |                      |                            |                         | Draw                                                      |                |                      |
|          | Ctorel and /Terest   |                            | 4 <b>Ν</b> <i>Π</i> - 4 | · · · · · · · · · · · · · · · · · · ·                     |                |                      |

Student/Instructor version at <u>www.MotionGenesis.com</u>  $\Rightarrow$  <u>Textbooks</u>  $\Rightarrow$  <u>Resources</u>

#### 20.5.8 MG road-map: Classic particle pendulum (2D)

A particle Q is welded to the distal end of a light rigid rope B. The rope's other end attaches to a point  $B_0$ , fixed in a Newtonian reference frame N. The swinging motion of B and Q is in a vertical plane that is perpendicular to unit vector  $\hat{\mathbf{b}}_z$ .

*MG* road-map for pendulum angle  $\theta$  and tension  $F_u$  ( $\hat{\mathbf{b}}_v$  measure of force on Q from B)

| Variable | Translate/<br>Rotate | Direction<br>(unit vector) | System<br>S | $ \begin{array}{c} \text{FBD} \\ \text{of } S \end{array} $ | About<br>point    | MG road-map  | equation | 1 | mg |
|----------|----------------------|----------------------------|-------------|-------------------------------------------------------------|-------------------|--------------|----------|---|----|
| θ        |                      |                            |             | Draw                                                        |                   | • ( =        | )        |   |    |
| $F_y$    |                      |                            |             | Draw                                                        | Not<br>applicable | • ( = (20.1) | )        |   |    |

Solution and simulation link at <u>www.MotionGenesis.com</u>  $\Rightarrow$  <u>Textbooks</u>  $\Rightarrow$  <u>Resources</u>. Draw FBDs Note: Only the  $\theta$  road-map equation is needed to predict motion. The other is shown for illustrative purposes.



Many additional MG road-map examples at www.MotionGenesis.com  $\Rightarrow$  Textbooks  $\Rightarrow$  Resources.



## 20.5.9 MG road-map: Dynamicist on a turntable (ice-skater)

A dynamics instructor stands on a spinning turntable and swings a heavy dumbbell Q inward and outward to change his spin-rate (similar to the ice-skater). Q is modeled as a particle rigidly attached (welded) to the end of the instructor's hands.

The schematic (below-right) shows a rigid body A (modeling the instructor's legs, torso, and head) that rotates (without friction) relative to Earth (a Newtonian reference frame N) about a vertical axis that is fixed in both A and N and which passes through both point  $N_{\rm o}$  of N and point  $A_{\rm cm}$  (A's center of mass).

A massless rigid arm B (modeling the instructor's arms and hands) attaches to A by a revolute motor (shoulder/muscles) whose revolute axis is horizontal and located at point  $B_{\rm o}$  of B ( $B_{\rm o}$  lies on the vertical axis connecting  $N_{\rm o}$  and  $A_{\rm cm}$ ).

The motor (muscles) **specifies** *B*'s angle  $\theta_{\rm B}$  relative to *A* to change in a known (prescribed) manner from 0 to  $\pi$  rad in 4 seconds  $(\theta_{\rm B} = \pi \frac{t}{4})$ .

Right-handed orthogonal unit vectors  $\hat{\mathbf{a}}_x$ ,  $\hat{\mathbf{a}}_y$ ,  $\hat{\mathbf{a}}_z$  and  $\hat{\mathbf{b}}_x$ ,  $\hat{\mathbf{b}}_y$ ,  $\hat{\mathbf{b}}_z$  are fixed in A and B, respectively, with  $\hat{\mathbf{a}}_y$  vertically-upward,  $\hat{\mathbf{b}}_z = \hat{\mathbf{a}}_z$  parallel to the revolute motor's axis, and  $\hat{\mathbf{b}}_y$  directed from Q to  $B_0$ .

| Quantity                                                                                                      | Symbol           | Type      | Value                          |
|---------------------------------------------------------------------------------------------------------------|------------------|-----------|--------------------------------|
| Earth's gravitational constant                                                                                | g                | Constant  | $9.8 \frac{m}{s^2}$            |
| Distance between $Q$ and $B_{o}$                                                                              | L                | Constant  | 0.7 m                          |
| Mass of $Q$                                                                                                   | m                | Constant  | 12  kg                         |
| A's moment of inertia about line $\overline{A_{\rm cm} B_{\rm o}}$                                            | $I_{yy}$         | Constant  | $0.6 \mathrm{kg} \mathrm{m}^2$ |
| Angle from $\widehat{\mathbf{a}}_{y}$ to $\widehat{\mathbf{b}}_{y}$ with $^{+}\widehat{\mathbf{a}}_{z}$ sense | $\theta_{\rm B}$ | Specified | $0.25 \pi t$ rad               |
| $\hat{\mathbf{a}}_{\mathbf{y}}$ measure of A's angular velocity in N                                          | $\omega_A$       | Variable  |                                |





Complete the *MG road-map* for the turntable's "spin-rate"  $\omega_A$  (Note: The "about point" is not unique)

|            |            |               |                             | -           |       |                      |
|------------|------------|---------------|-----------------------------|-------------|-------|----------------------|
| Variable   | Translate/ | Direction     | $\operatorname{System}_{S}$ | FBD<br>of S | About | MC road-man equation |
| variable   | notate     | (unit vector) | 5                           | 01.5        | point | MG roun-map equation |
| $\omega_A$ |            |               |                             | Draw        |       |                      |
|            |            |               |                             |             |       |                      |

 ${\it Student/Instructor \ version \ at \ \underline{www.MotionGenesis.com} \ \Rightarrow \ \underline{Textbooks} \ \Rightarrow \ \underline{Resources}$ 

# 20.5.10 MG road-map: Instructor on turntable with spinning wheel (3D)

The pictures to the right shows dynamicist Dr. G standing on a spinning turntable and holding a spinning bicycle wheel.

The mechanical model (below right) has a rigid body A (modeling the turntable, legs, torso, and head) that can freely rotate relative to Earth (Newtonian reference frame N) about a vertical axis that is fixed in both A and N and which passes through the center of the turntable (point  $N_{\rm o}$ ) and  $A_{\rm cm}$  (A's center of mass).

A light (massless) rigid frame B (modeling the shoulders, arms, hands, and a portion of the bicycle wheel's axle) is attached to A by a revolute motor at point  $B_0$  of B ( $B_0$  lies on the vertical axis passing through  $A_{\rm cm}$ ). The motor's revolute axis passes through points  $B_0$  and  $C_{\rm cm}$ , is horizontal, and is parallel to  $\hat{\mathbf{b}}_{\mathbf{x}} = \hat{\mathbf{a}}_{\mathbf{x}}$ .

A rigid bicycle wheel C is attached to B by a frictionless revolute joint whose axis passes through  $C_{\rm cm}$  (C's center of mass) and is parallel to  $\hat{\mathbf{b}}_{\rm y}$ .

Right-handed orthogonal unit vectors  $\hat{\mathbf{a}}_x$ ,  $\hat{\mathbf{a}}_y$ ,  $\hat{\mathbf{a}}_z$  and  $\hat{\mathbf{n}}_x$ ,  $\hat{\mathbf{n}}_y$ ,  $\hat{\mathbf{n}}_z$  are fixed in A and N, respectively. Initially  $\hat{\mathbf{a}}_i = \hat{\mathbf{n}}_i$  (i = x, y, z), and then rigid body A is subjected to a right-handed rotation characterized by  $\theta_A \hat{\mathbf{a}}_z$  where  $\hat{\mathbf{a}}_z = \hat{\mathbf{n}}_z$  is directed vertically-upward and  $\hat{\mathbf{a}}_x$  points from Dr. G's back to front (parallel to the axis of the revolute motor connecting A and B).

Unit vectors  $\hat{\mathbf{b}}_{x}$ ,  $\hat{\mathbf{b}}_{y}$ ,  $\hat{\mathbf{b}}_{z}$  are fixed in *B*. Initially  $\hat{\mathbf{b}}_{i} = \hat{\mathbf{a}}_{i}$  (i = x, y, z), then *B* is subjected to a  $\theta_{B}$   $(\hat{\mathbf{a}}_{x} = \hat{\mathbf{b}}_{x})$  right-handed rotation in *A* where  $\hat{\mathbf{b}}_{y}$  is directed along the wheel's axle from Dr. G's right-to-left hand. Dr. G changes  $\theta_{B}$  in a **specified** sinusoid manner with amplitude 30° and period 4 seconds.

| Quantity                                                                                                                              | Sym                                   | bol and type | Value                               |
|---------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|--------------|-------------------------------------|
| Mass of $C$                                                                                                                           | $m^{C}$                               | Constant     | 2  kg                               |
| Distance between $B_{\rm o}$ and $C_{\rm cm}$                                                                                         | $L_x$                                 | Constant     | $0.5 \mathrm{m}$                    |
| A's moment of inertia about $B_{\rm o}$ for $\hat{\mathbf{a}}_{\rm z}$                                                                | $\mathbf{I}_{\mathbf{z}\mathbf{z}}^A$ | Constant     | $0.64~\rm kgm^2$                    |
| C's moment of inertia about $C_{\rm cm}$ for $\hat{\mathbf{b}}_{\rm x}$                                                               | $\mathbf{I}^C$                        | Constant     | $0.12~\rm kgm^2$                    |
| C's moment of inertia about $C_{\rm cm}$ for $\hat{\mathbf{b}}_{\rm y}$                                                               | $J^C$                                 | Constant     | $0.24~\rm kgm^2$                    |
| Angle from $\widehat{\mathbf{n}}_{\mathrm{x}}$ to $\widehat{\mathbf{a}}_{\mathrm{x}}$ with $+\widehat{\mathbf{n}}_{\mathrm{z}}$ sense | $\theta_{\rm A}$                      | Variable     |                                     |
| Angle from $\widehat{\mathbf{a}}_y$ to $\widehat{\mathbf{b}}_y$ with ${}^+\widehat{\mathbf{a}}_x$ sense                               | $\theta_{\rm B}$                      | Specified    | $\frac{\pi}{6}\sin(\frac{\pi}{2}t)$ |
| $\hat{\mathbf{b}}_{\mathrm{y}}$ measure of C's angular velocity in B                                                                  | $\omega_C$                            | Variable     | 0 2                                 |



Purchase turntable/bicycle wheel at Arbor-scientific

#### Complete the *MG* road-map for $\theta_A$ and $\omega_C$ (the "about points" are not unique).

| Variable       | Translate/<br>Rotate | Direction<br>(unit vector) | System $S$ | $\begin{array}{c} \text{FBD} \\ \text{of } S \end{array}$ | About<br>point | MG road-map equation |
|----------------|----------------------|----------------------------|------------|-----------------------------------------------------------|----------------|----------------------|
| $	heta_{ m A}$ |                      |                            |            | Draw                                                      |                |                      |
| $\omega_C$     |                      |                            |            | Draw                                                      |                |                      |

 ${\it Student/Instructor\ version\ at\ \underline{www.MotionGenesis.com}\ \Rightarrow\ \underline{Textbooks}\ \Rightarrow\ \underline{Resources}}$ 



# 20.5.11 MG road-map: Bear riding a unicycle on a high-wire (3D)

The figures to the right show a (massless) pulley-wheel B that <u>rolls</u> along a taut (rigid) cable N (fixed on Earth, a Newtonian frame). Rigid body C (seat, rider, and balancing poles) attach to B with an ideal revolute motor at  $B_{\rm o}$ (B's centroid). The motor axis is aligned with B's symmetry axis.

Right-handed orthogonal unit vectors  $\hat{\mathbf{n}}_{x}$ ,  $\hat{\mathbf{n}}_{y}$ ,  $\hat{\mathbf{n}}_{z}$  are fixed in N with  $\hat{\mathbf{n}}_{z}$  vertically-upward and  $\hat{\mathbf{n}}_{x}$  directed horizontally along the cable from a point  $N_{o}$  (fixed in N) to  $B_{N}$  (B's rolling point of contact with N).

Right-handed orthogonal unit vectors  $\hat{\mathbf{a}}_x$ ,  $\hat{\mathbf{a}}_y$ ,  $\hat{\mathbf{a}}_z$  are directed with  $\hat{\mathbf{a}}_x = \hat{\mathbf{n}}_x$ ,  $\hat{\mathbf{a}}_y$  parallel to the motor axis, and  $\hat{\mathbf{a}}_z$  from  $B_N$  to  $B_0$ .

Right-handed unit vectors  $\hat{\mathbf{c}}_{x}$ ,  $\hat{\mathbf{c}}_{y}$ ,  $\hat{\mathbf{c}}_{z}$  are parallel to C's principal inertia axes about  $C_{\rm cm}$  (C's center of mass), with  $\hat{\mathbf{c}}_{y} = \hat{\mathbf{a}}_{y}$  and  $\hat{\mathbf{c}}_{z}$  from  $B_{\rm o}$  to  $C_{\rm cm}$  (with balancing poles,  $C_{\rm cm}$  is below  $B_{\rm o}$  and  $L_{C}$  is negative).

| Quantity                                                                                                                                       | Symbol     | Type      | Value                |
|------------------------------------------------------------------------------------------------------------------------------------------------|------------|-----------|----------------------|
| Earth's gravitational constant                                                                                                                 | g          | Constant  | $9.8 \mathrm{m/s^2}$ |
| Radius of $B$                                                                                                                                  | $r_B$      | Constant  | $30~{\rm cm}$        |
| $\hat{\mathbf{c}}_{z}$ measure of $C_{cm}$ 's position vector from $B_{o}$                                                                     | $L_C$      | Constant  | $-35~\mathrm{cm}$    |
| Mass of $C$                                                                                                                                    | $m^{C}$    | Constant  | 2  kg                |
| C's moment of inertia about $C_{\rm cm}$ for $\hat{\mathbf{c}}_{\rm x}$                                                                        | Ι          | Constant  | $3.4 \text{ kg m}^2$ |
| C's moment of inertia about $C_{\rm cm}$ for $\hat{\mathbf{c}}_{\rm y}$                                                                        | J          | Constant  | $3.2 \text{ kg m}^2$ |
| C's moment of inertia about $C_{\rm cm}$ for $\hat{\mathbf{c}}_{\rm z}$                                                                        | K          | Constant  | $2.8 \text{ kg m}^2$ |
| $\hat{\mathbf{a}}_{\mathbf{y}}$ measure of motor torque on <i>B</i> from <i>C</i>                                                              | $T_y$      | Specified | below                |
| Angle from $\hat{\mathbf{n}}_z$ to $\hat{\mathbf{a}}_z$ with $-\hat{\mathbf{n}}_x$ sense                                                       | $q_A$      | Variable  |                      |
| $\hat{\mathbf{a}}_{y}$ measure of ${}^{A}\vec{\boldsymbol{\omega}}^{B} ({}^{A}\vec{\boldsymbol{\omega}}^{B} = \omega_{B}\hat{\mathbf{a}}_{y})$ | $\omega_B$ | Variable  |                      |
| Angle from $\hat{\mathbf{a}}_z$ to $\hat{\mathbf{c}}_z$ with $+\hat{\mathbf{a}}_y$ sense                                                       | $q_C$      | Variable  |                      |
| $\hat{\mathbf{n}}_{\mathbf{x}}$ measure of $\vec{\mathbf{r}}^{~B_N/N_{\mathrm{o}}}$                                                            | x          | Variable  |                      |



Form a complete set of MG road-maps for this systems's equations of motion (solution is not unique). If necessary, add more MG road-maps so there are the same number of equations as unknowns.

| Variable                                                                                                                         | Translate/<br>Rotate | Direction<br>(unit vector) | $\mathop{\rm System}_S$ | $_{\mathrm{of}\ S}^{\mathrm{FBD}}$ | About<br>point | MG road-map equation | Additional<br>Unknowns |  |
|----------------------------------------------------------------------------------------------------------------------------------|----------------------|----------------------------|-------------------------|------------------------------------|----------------|----------------------|------------------------|--|
| $q_A$                                                                                                                            |                      |                            |                         | Draw                               |                |                      |                        |  |
| $\omega_B$                                                                                                                       |                      |                            |                         | Draw                               |                |                      |                        |  |
| $q_C$                                                                                                                            |                      |                            |                         | Draw                               |                |                      |                        |  |
| x                                                                                                                                |                      |                            |                         | Draw                               |                |                      |                        |  |
| * Additional scalar constraint equation(s):                                                                                      |                      |                            |                         |                                    |                |                      |                        |  |
| To move the uniquele to $r_{-}$ , $r_{-} = 10$ m, use a "PD control low" with $T_{-} = -0.3 (r_{-}, r_{-}, r_{-}) = 0.6 \dot{r}$ |                      |                            |                         |                                    |                |                      |                        |  |



# 20.5.12 MG road-map: Four-bar linkage statics (2D)

The figure to the right shows a planar four-bar linkage consisting of frictionless-pin-connected uniform rigid links A, B, and C and ground N.

- Link A connects to N and B at points  $A_0$  and  $A_B$
- Link B connects to A and C at points  $B_{o}$  and  $B_{C}$
- Link C connects to N and B at points  $C_{\rm o}$  and  $C_B$
- Point  $N_{\rm o}$  of N is coincident with  $A_{\rm o}$
- Point  $N_C$  of N is coincident with  $C_o$

Right-handed orthogonal unit vectors  $\hat{\mathbf{a}}_{i}$ ,  $\hat{\mathbf{b}}_{i}$ ,  $\hat{\mathbf{c}}_{i}$ ,  $\hat{\mathbf{n}}_{i}$ (i = x, y, z) are fixed in A, B, C, N, with:

- $\widehat{\mathbf{a}}_{\mathbf{x}}$  directed from  $A_{\mathbf{o}}$  to  $A_{B}$
- $\hat{\mathbf{b}}_{\mathbf{x}}$  directed from  $B_{\mathbf{o}}$  to  $B_C$
- $\hat{\mathbf{c}}_{\mathbf{x}}$  directed from  $C_{\mathbf{o}}$  to  $C_B$
- $\widehat{\mathbf{n}}_{\mathbf{x}}$  vertically-downward
- $\widehat{\mathbf{n}}_{\mathrm{v}}$  directed from  $N_{\mathrm{o}}$  to  $N_{C}$
- $\widehat{\mathbf{a}}_z = \widehat{\mathbf{b}}_z = \widehat{\mathbf{c}}_z = \widehat{\mathbf{n}}_z$  parallel to pin axes

As in Hw 8.7, create the following "loop equation" and dot-product with  $\hat{\mathbf{n}}_{x}$  and  $\hat{\mathbf{n}}_{y}$ .

$$L_A \,\widehat{\mathbf{a}}_{\mathrm{x}} + L_B \,\widehat{\mathbf{b}}_{\mathrm{x}} - L_C \,\widehat{\mathbf{c}}_{\mathrm{x}} - L_N \,\widehat{\mathbf{n}}_{\mathrm{y}} = \vec{\mathbf{0}}$$



| Quantity                                                                                                                                 | Symbol      | Value                |  |  |
|------------------------------------------------------------------------------------------------------------------------------------------|-------------|----------------------|--|--|
| Length of link $A$                                                                                                                       | $L_A$       | 1 m                  |  |  |
| Length of link $B$                                                                                                                       | $L_B$       | $2 \mathrm{m}$       |  |  |
| Length of link $C$                                                                                                                       | $L_C$       | 2 m                  |  |  |
| Distance between $N_{\rm o}$ and $N_C$                                                                                                   | $L_N$       | 1 m                  |  |  |
| Mass of $A$                                                                                                                              | $m^A$       | 10  kg               |  |  |
| Mass of $B$                                                                                                                              | $m^B$       | 20  kg               |  |  |
| Mass of $C$                                                                                                                              | $m^{C}$     | 20 kg                |  |  |
| Earth's gravitational acceleration                                                                                                       | g           | $9.81 \frac{m}{s^2}$ |  |  |
| $\widehat{\mathbf{n}}_{\mathrm{y}}$ measure of force applied to $C_B$                                                                    | H           | 200 N                |  |  |
| Angle from $\widehat{\mathbf{n}}_x$ to $\widehat{\mathbf{a}}_x$ with ${}^+ \widehat{\mathbf{n}}_z$ sense                                 | $q_A$       | Variable             |  |  |
| Angle from $\widehat{\mathbf{n}}_{\mathrm{x}}$ to $\widehat{\mathbf{b}}_{\mathrm{x}}$ with $^{+}\widehat{\mathbf{n}}_{\mathrm{z}}$ sense | $q_B$       | Variable             |  |  |
| Angle from $\widehat{\mathbf{n}}_{\mathrm{x}}$ to $\widehat{\mathbf{c}}_{\mathrm{x}}$ with $^{+}\widehat{\mathbf{n}}_{\mathrm{z}}$ sense | $\bar{q}_C$ | Variable             |  |  |

Complete the following *MG* road-map to determine this systems's static configuration.

| Variable                                 | Translate/<br>Rotate | Direction<br>(unit vector) | $\mathop{\rm System}_S$ | $_{\mathrm{of}\ S}^{\mathrm{FBD}}$                                                 | About point | N | IG road-map equation | n | Additional<br>Unknowns |
|------------------------------------------|----------------------|----------------------------|-------------------------|------------------------------------------------------------------------------------|-------------|---|----------------------|---|------------------------|
|                                          |                      |                            |                         | Draw                                                                               |             |   |                      |   | $F_x^C, F_y^C$         |
|                                          |                      |                            |                         | Draw                                                                               |             |   |                      |   | $F_x^C, F_y^C$         |
|                                          |                      |                            |                         | Draw                                                                               |             |   |                      |   | $F_x^C, F_y^C$         |
| * Additional scalar constraint equation: |                      |                            | $-L_A \sin(q)$          | $-L_A \sin(q_A) \dot{q}_A - L_B \sin(q_B) \dot{q}_B + L_C \sin(q_C) \dot{q}_C = 0$ |             |   |                      |   |                        |
| * Additional scalar constraint equation: |                      |                            |                         | $L_A \cos(q_A) \dot{q}_A + L_B \cos(q_B) \dot{q}_B - L_C \cos(q_C) \dot{q}_C = 0$  |             |   |                      |   |                        |

Determine the *static equilibrium* values of  $q_A$ ,  $q_B$ ,  $q_C$ . Use your intuition (guess), circle the *stable* solution.

| Solution 1 | $q_A \approx$ | $20.0^{\circ}$  | $q_B \approx 71.7^{\circ}$ | $q_C = 38.3^\circ$    |
|------------|---------------|-----------------|----------------------------|-----------------------|
| Solution 2 | $q_A \approx$ | $249.3^{\circ}$ | $q_B \approx 140.2^\circ$  | $q_C = 199.1^{\circ}$ |
| Solution 3 | $q_A \approx$ | $30.7^{\circ}$  | $q_B \approx 226.1^\circ$  | $q_C = 254.7^{\circ}$ |

Solution at <u>www.MotionGenesis.com</u>  $\Rightarrow$  <u>Get Started</u>  $\Rightarrow$  Four-bar linkage



Courtesy Design Simulation Technology